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varying, and connects the carriages to each other and to the robot structure
at the slowly-varying connection points. The modal data required for each

component is obtained experimentally in order to get a realistic model.
The analysis results in prediction of vibrations that are produced by the
inertia forces as well as gravity and friction forces which arise when the
robot carriages move with some prescribed motion.

Computer simulations and experimental determinations are conducted -J

in order to calculate the vibrations at the robot end-effector. Comparisons
are shown to validate the model in two ways: for fixed-configuration the
mode shapes and natural frequencies are examined, and then for changing
configuration the residual vibration at the end of the move is evaluated.

A preliminary study was done on a geometrically nonlinear system
which also has position-dependency. The system consisted of a flexible
four-bar linkage with elastic input and output shafts. The behavior of the
rocker-beam is analyzed for different boundary conditions to show how some
limiting cases are obtained. A dimensional analysis leads to an evaluation
of the consequences of dynamic similarity on the resulting vibration.
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Abstract

Methods are developed for predicting vibration response characteristics
of systems which change configuration during operation. A cartesian robot,
an example of such a position-dependent system, served as a test case for
these methods and was studied in detail.

The chosen system nmdcj was formulated using the technique of Compo-
nent Mode Synthesis!(CMS)OThe'model assumes that the system is slowly

nl-varying, and connects the carriages to each other and to the robot structure
at the slowly-varying connection points. The modal data required for each
component is obtained experimentally in order to get a realistic model.
The analysis results in prediction of vibrations that are produced by the
inertia forces as well as gravity and friction forces which arise when the
robot carriages move with some prescribed motion.

Computer simulations and experimental determinations are conducted
in order to calculate the vibrations at the robot end-effector. Comparisons
are shown to validate the model in two ways: for fixed-configuration the
mode shapes and natural frequencies are examined, and then for changing
configuration the residual vibration at the end of the move is evaluated.

A preliminary study was done on a geometrically nonlinear system
which also has position-dependency. -,The system consisted of a flexible
four-bar linkage with elastic input and output shafts. The behavior of the
rocker-beam is analyzed for different boundary conditions to show how some
limiting cases are obtained. A dimensional analysis leads to an evaluation
of the consequences of dynamic similarity on the resulting vibration.
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Chapter 1

INTRODUCTION

1.1 Summary

A position-dependent system in vibration analysis is defined as a system

whose vibration characteristics are changing as its components change their

relative positions. Machines and structures such as cranes and bridges are

examples of such systems. One such system which motivated the present

analysis, is a cartesian robot (seen in Figure 1.1) as a structure with moving

carriages) whose dynamic performance needs to be predicted accurately

during the motion of the carriages.

The importance of the present analysis comes from the fact that this is a

precision assembly robot and any residual vibration at the end of the move

can badly affect assembly operations with small tolerances. So, it would be

desirable to have a good mathematical model of how the vibrations evolve

during the motion so that these vibrations could be actively controlled. It

could also be used as a design model.

The mathematical model to be developed should be accurate and fast

to execute when implemented in a computer. The .pproach followed to

develop this model was based on Component Mode Synthesis which is a

10
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CHAPTER 1. INTRODUCTION 12

method to connect substructures to predict the dynamic behavior of an

assembly based on the dynamic behavior of each substructure. This method

(CMS), traditionally applied to connect parts that form a time-invariant

system can be extended to position-dependent systems under the following

assumption: that the system is of slowly-varying coefficients; that is, that

any appreciable change in the system coefficients occurs after many cycles

of vibration.

Experimental modal analyses were performed to determine the dynamic

behavior of each substructure. We used these results applying CMS to de-

velop the mathematical model. There were difficulties to be overcome. First

was the problem of parameter identification to accurately scale the eigen-

vectors of each substructure so that they were orthonormal. This involved

special curve-fitting techniques applied to transfer functions obtained by

test. Another important difficulty was to realize that an ill-condition may *
be present when we use several points to connect 2 substructures, so we

developed a method to detect this problem and to aid in correcting it.

The model had to be validated by test, and it was done for two different

aspects: the quasi-static case and the dynamic case. For the quasi-static

case we fixed the position of the carriages so that the problem became time- . '

invariant and then we compared the modal characteristics as obtained by

testing the complete robot with the modal data calculated by the model.

The average error in natural frequencies for the first 17 modes was 6.9%.

The second aspect of the validation involved running the carriages according

to a given velocity profile at the motor end, and recording the vibration

at the end effector of the robot; this was compared to the prediction of

the model when a prescribed motion at the motor end (equal to the one

obtained in the test) was imposed. These results showed an acceptable

agreement between the predicted results and the test results.

Ne
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Figure 1.2: Simply supported beam with moving 2-dof subsystem

1.2 Previous Research in Modeling of Position-

Dependent Systems

The problem of studying the vibrations of a position-dependent system in-

volves dealing with systems of continuous-parameter elements which are

described by partial differential equations with changing boundary condi-

tions as the elements change position. This situation, already difficult to

solve for the case of ideal elements, becomes worse when the elements are

real, that is, when there are all kinds of non- uniformities present. Then,

an exact solution is very cumbersome and for practical purposes we should

use a method that gives a fast and accurate solution.

One practical approach adopted by civil engineers in the case of the

] IIL*ill

bridge problem is explained by Biggs [91, where it is tacitly assumed that

the system is slowly varying, and they use one point of connection to mode

te contact between the bridge and the ven-icl. The analysis simplifies the

.a...
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CHAPTER 1. INTRODUCTION 14

single-span bridge structure by taking it as a simply-supported beam; the

vehicle is taken as a 2-degree of freedom system. To derive the equations

of motion, assuming one mode of the beam only, the method uses the
modal equation of motion for the beam A'" +w2A, F .(z The term

F, the force between the beam and the 2-degree of freedom subsystem is

expressed as a function of the acceleration of the mass in contact with the

beam (1 ), (see figure 1.2) the acceleration of the second mass(i) and the I

spring force (k(z - y ,)) in the 2-degree of freedom subsystem. A coupled

set of differential equations in !yc and z results.

Since the problem in hand, as in many other manipulators, can be stud-

ied under the assumption of slowly-varying coefficients as is explained later,

we can extend the idea behind the approach for the bridge problem. We first

notice that in the method mentioned above (bridge problem), the dynamics

of the 2-degree of freedom subsystem are introduced to the beam equation

through the condition of equilibrium of forces at the point of connection.

This idea is broadly used in methods of connection of two or more sub-

structures, namely the Impedance method [61] and the Component Mode

Synthesis method [33], where the starting point is the specification that

the vibration of any two points of connection should be the same. Then,

the Impedance method substitutes for the motion, a frequency function

whereas the Component Mode Synthesis method uses a function of time. 0

These methods have several advantages over that of Biggs 191. They can

handle several points of connection between parts and they can work in ,

3-D in a more convenient way than the previous approach. In addition to

that, they can use data obtained experimentally, which may lead to a more

realistic model.Af

For the more general case of position-dependent systems, where the co-

efficients may quickly vary during the vibration, the solution may be found

,, %,
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if a pattern of vibration is repeated for each cycle of the oscillating system.

In this case there is extensive literature. A section of this literature is re-

lated to the vibration of linkages, and for some simple cases the differential

equations of motion reduce to Hill's equation or to Mathew's equation. One

example is the research done by Capellen [13].

A method for analyzing the complete behavior of industrial robotic ma-

nipulators with flexible links and including the control systems is presented

by Sunada and Dubowsky [73] in which they use finite element models to

analyze the links. The miethod is made computationally efficient through

the use of Component Mode Synthesis.

For the case of the robot where each component remains invariant but

the boundary conditions are changing with position, the method of Com-

ponent Mode Synthesis may be more adequate for giving a mathematical

model which can run fast in the computer since it requires extensive pro-
0

cessing of the experimental data to be done beforehand. It uses only the .

modal results for the components in the model.

1.3 Literature Survey on Component Mode

Synthesis kN

The use of modal characteristics of each component to derive the approxi- •

mate dynamic behavior of the assembled structure may be accomplished in

different ways as summarized by Hart, Hurty and Collins [34]. These meth-

ods can be grouped in three categories. The first is Free-free Modal Synthe- --

sis which is based on free-free modes of the components. Hou [33] reviews

these methods and introduces a new approach which is adequate for han-

dling experiientally determined inode shapes. This procedure is applied

in this study to develop the mathmcitatical iiiodel of the robot. The second

0 1Ryj

_-, ,rU



CHAPTER 1. INTRODUCTION 16

is Component Mode Synthesis which uses boundary-fixed mode shapes and

boundary displacement functions. This method was pioneered by Hurty

[36] where natural modes and frequencies of structural systems are deter-

mined by an energy method, synthesized from admissible mode functions

selected for the component mode members of the system. The synthesis is

accomplished by using equations of constraint that follow from conditions

of force equilibrium and deflection compatibility at the junctions. Other

authors have introduced variations to the method [34],[16],[3]. All these 0

methods are very effective in reaching convergence when only a few modes

of the components are available. The third category is Component Mode

Substitution which uses free-free modal displacements and interface loading

at the attachment points. It was introduced by Benfield and Hruda [4], and

it has the advantage of improving the accuracy obtained by the free-free

procedure.

The accuracy of the model for the free-free case depends on the num-

ber of modes used.We have found that for this particular application the

number of modes required to get a good convergence index can be easily

obtained by test (10 to 16 modes for each component including the rigid

body modes).

Other authors have surveyed the existing literature on Component Mode

Synthesis, Greif and Wu [26] summarize the work done from 1980 to 1983.

Craig [17] surveys some of the many variations to the basic procedure of

CMS which have been extensively developed during the past 20 years for

application in the modal analysis of complex structures. He points out that

further research on damping synthesis and the use of experimental data to

either verify or formulate CMS mathematical models should be conducted.

A technique for modeling a structure using a severely truncated mode

set is developed by Hintz [321 where in order to improve convergence he uses
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modes (constraint modes and attachment modes) based upon a static anal- S

ysis of the component structure response due to imposed interface forces

and displacements. MacNeal [52] uses statically determined deflection in-

fluence coefficients as well as residual flexibility of the higher, truncated

modes to jn- :ove accuracy. Rubin [67] introduces a method that employs

an incomplete set of free-boundary normal modes each adjusted to account

for the contribution of residual(neglected) modes. This method adds resid-

ual inertia and dissipative effects to the residual flexibility introduced by

MacNeal.

On the use of attachment modes in substructure coupling, Craig and

Chang [181 make an evaluation of the methods that employ attachment

modes, and they develop a generalized substructure coupling procedure

which has good convergence characteristics. Hale [27] increases accuracy

by an iterative procedure for generating improved substructure trial state

vectors.

Regarding damping synthesis, there are a few analytical studies. Kana

and co-workers [43]44,[45],[46] developed three methods for calculating

proportional substructure damping matrices from test data. Hasselman

[301, [31] used diagonal and off-diagonal terms to develop system damping

matrices that involve various substructure coupling procedures.

The use of experimental data to develop CMS mathematical models

and the experimental verification of the simulations has been reported in

a few papers. Klosterman and Lemon [47] present a building block ap-

proach to do substructure coupling using either experimentally obtained

data or modal data obtained by Finite Element analysis. They applied the

method to complex mechanical machinery consisting of 5 components, and %

used 6-7 elastic normal modes for the most flexible ones. They emphasized

that the higher modes that were left out in the truncation had a residual

N' %
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flexibility which had a considerable influence on the system frequencies, so

they included this effect by calculating the residual flexibility subtracting

from the modal response representation, near the antiresonances, the con-

tribution of the resonant modes. Then, they added an element with an

equivalent stiffness derived from the above residual flexibility to the rest of

the components. Another paper by Klosterman [48] applies this method to

a complex automotive system.

Among other works on the use of experimental data we can mention the

one by Thoren [75] that describes a technique by which orthonormal modal

vectors computed from dynamic response data, are used to derive mass,

stiffness and damping matrices for a discrete model of a distributed elastic

system. The same problem is solved by Berman, Wei and Rao [7], and by

Berman and Nagy [6]. Ibrahim [40] presents a technique to use a set of

identified complex modes together with an analytical mathematical model -

of a structure under test to compute improved mass, stiffness and damping

matrices, this based on the orthogonality condition. Berman (8] extends the

method of incomplete models and uses it to obtain dynamic equations of

motion of a helicopter transmission gearbox from shake test data. Goyder

[25] deals with structures of high modal density and reviews methods of

mathematical modeling. Ewins and Sainsbury [22] develop techniques for

obtaining multidirectional mobility data which must be sufficiently accurate

and complete for vibration analysis of an assembly of connected structures.

Considerable attention has been given to the topic of convergence of,.-K

CMS and mode selection. Hurty [371,[38),[39] developed a first-order per-

turbation technique to determine the contribution of truncated modes in ,

the natural frequencies of the assembled system as obtained by his method

of CMS. Morosow and Abbott [551 determined weighting factors to assess

which component modes should be included. ,

- V~ %'%~~ ~~"
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1.4 Organization of the Thesis

The thesis introduction describes the problem we are dealing with and the

approach followed to solve it, as well as the experiments and calculations

performed. It discusses the existing literature on the topic as well.

The second chapter, Proposed Quasi-static Model of a Cartesian Robot,

introduces details about the method of Component Mode Synthesis and

explains how the mathematical model was developed for the homogeneous

case, that is, with no forcing terms. It then focuses on predicting modal

results for a given configuration of the robot. It also explains the difficulties

encountered with the orthonormalization of the eigenvectors and with the

ill-conditioning that may be present .

The following chapter, Proposed Dynamic Model of a Cartesian Robot

introduces the forcing terms in the model which are due to the inertia forces

associated with the acceleration of the carriages and to the gravity forces

acting on a changing system. At this point, the model can predict the

vibration of any of the test points in the structure.

Then we show, in the chapter of Experiments and Results, the experi-

ments that have been done to validate the model and the degree of corre-

lation obtained with the model used.

Finally we include three appendices to give more detail about the data

and results. Appendix A deals with the mode shape data obtained for each .

of the robot components as well as for the assembled robot. Appendix B

gives detail about the vibrations of the moving robot, in particular about

the method followed to derive the forcing function. Appendix C shows

a preliminary analysis done by this author. This work gave knowledge

and insights on how to deal with problems of systems that change their

configuration.
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PROPOSED QUASI-STATIC

MODEL OF A CARTESIAN

ROBOT

2.1 Application of Component Mode Syn-

thesis

The free-free modal synthesis procedure [33] which we have used in the

analysis and referred to as CMS from now on, can be summarized as follows:

Suppose that we have 2 components A and B whose natural frequencies S S

(w.1, [wbj and mode shapes []I.,[Ob] are known. These components can be . ..

either free in space or fixed, but the interfaces must be free when obtaining

their mode shapes. Assuming that the eigenvectors are orthonormal (unit *
modal mass) we have two sets of decoupled equations to represent both

systems:

{}+ [ (] P.)= ~] (2.1)

(;;b) + (wUjj (Pbi = kblt (fbi

NO2R
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where the actual vibration would bes

1xJ = [0'.) (P"} (2.2)

If we enforce compatibility at the interfaces, then we have for the connec-

tion points {x,,} = {xbc} or [10,1{p.1} 14'bJ{pb} where the subindex c r

indicates that only the interface points are being used. If we apply these

compatibility conditions, the original generalized coordinates {p.) and {pb}

are overconstrained and we have to reduce the order of the system so that

we end up with a set of linearly independent coordinates {q). We can

partition these vectors and the modal matrices as well

{{Pa (P.) {q (2.3)

pPb qg, (2.4)

[Ob.= ] (2.6)

where the superscripts I and D stand for independent and dependent.

Then,

[a. b~][~ ~ =[Aj {q&} (2.7)

Rearranging we have

jP.D I [1 ,OD ,01(2.8)

Finll ifweinclude the complete vector (p) we have

aI 0 % %

P 1 0a . , 1 ' ~ q bI I!1
A% ? I
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or {p} = [Tl{q} . This matrix [T] is the transformation matrix that con- ,

nects A and B.

To obtain the equations of motion of the assembled system we first

combine the two parts as follows:

, + =_ (2.10)

Substituting {p} = [T]{q} and then premultiplying by [T]t we get:

IT]' IT) [ + IT]' [ IT] {}[T]' ] (2.11)

These equations are now coupled and after solving the eigenvalue problem

of this pseudosystem we get (w'} and [t]. Finally for the assembled system

we have that w and k are given by

{w} = {w'} (2.12) L

and

IT] [¢] (2.13)

Notice that the name free-free for this method does not imply that the

components have to be tested on a free-free condition(floating), but rather

that the points of connection of the components should be free during the

test(as opposed to the fixed-boundary case), while the other points can be

either fixed or free.

One important characteristic of this method (CMS) is that it can ei- .-

ther use mode shapes for each component as obtained by a finite-element

technique or the mode shapes can be obtained experimentally. There are .,.

complicated cases where we may be better off using test results as data for

CMS in order to get a good model. Another important advantage of CMS

is that it handles data in ,,atrLx form. This allows ,,s to tackle complicated

% W % ~ % % % . ..~. .. * ~*,.~ * ~ ~ %.% .*. .e.
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M v

I . (A)

Ln

L

Figure 2.1: Two-dof subsystem moving on beam

problems with many degrees of freedom at the connections and in 3-D with 0

ease. This CMS approach works well for time-invariant czses, that is, when

the points of connection are always the same and each component remains

invariant. This approach can be extended to the case of position-dependent

systems for the case of slowly-varying coefficients as shown below. -

Consider the following example: Suppose we have a bridge prcblem as

explained by Biggs [9] and illustrated in Figure 2.1. We will here develop the

equations of motion for this system using CMS methods and then we will

compare the results with those obtained by Biggs through use of another

method. The bridge is modeled as a beaiin and the vehicle as a 2-degree of

freedom system traveling at constant velocity as shown in Figure 2.1. CVS

Assume that M,. slides without friction and always in contact with the

beam. Assume also that the time r, = , required to travel the distance

L, is much larger than a natural period of oscillation t, : r,, >> t" . We

can conceive two time scales in this prohlei; a fast tiic t that follows each

Ot
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cycle of vibration and a slow time r that follows the rigid body motion of

the carriages. This variable e is defined as the ratio of the slow time r to

the fast time t := , and for the beam problem its formula is
2wf

E = - (2.14)

or in other words E is the ratio of the period of the dominant mode of

oscillation to twice the travel time.

Assume r = et , then Z = Vr = te .

2.1.1 Characteristics of the beam

Consider the first mode only for a simply supported beam: w2 , 4 A =

V2Lsin* ?, f, =0 o.

2.1.2 Characteristics of the 2-degree of freedom sys-

tem 0

The 2-degree of freedom subsystem, free in a 1-D space has the following

natural modes: w2 =0,2 k, .+

[OBI 1  C (2.15)
cI -

where C, - M ,and C2 =
M..,,.. M...+.I: q.,

[fnI= ] 8  (2.16)
(M., + M .) g

2.1.3 Compatibility condition ,

At the connection point we have y,/ =y,,. or

[[O,{PA} = [0, ,,
Pn,

S V.-

/ ~ , 4,,~. - ... ,+,
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Substituting we get

2sin (PA[C1 C2 (2.17)
LL L i

eliminate PjD2 to get

IPA
weePD, IT PA (2.18)

1 0

With this transformation matrix [T] we can form the equations of motion

of the assembled system in terms of the remaining generalized coordinates

q PA, to get

[mnJ4} + [kj{q} = F} (2.19) E~

where

W24 0 01
[in] = [Tit [TJ, [k] = T]t  0 0 0 IT]$

00 2.

M.,. L t, I &* .

L 6g

(M.............+...........
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Substituting the expression for [T] the equations of motion become:

[1+ M,n (M.. + M..8)sin 2 - ~ M,,tM 1 .sin! i *1

[symmetric i+M' L i
W2 +21- . + M"') 2si 2  2

+ WA +LM K1Vtl +i -- a- (M.., + M..) sin fL[symmetric k, M.... M..

{ ~ {~(M a+Miu)V~~n-r(2.20)

To compare this solution with the one provided by Biggs we miust determine

ycthe vibration at the midspan of the beam, and z , the vibration of the

mass M... These are obtained by

{ /C}= ~[T] [q] (2.21)

Substituting the expression for [TI and solving for q we get:

{ } -A f]{-. (2.22)

Also, the seL,,nd time derivative of q is given by:

+ 0

[o _ o]~~fl+(2.23)
M_ Vf2" M os C 0 iI

e M. L 11LL L1)J +

2 0

Substituting these expressions for q and 4 and preniultiplying by

[i M'.. f71[ L (2.24)

0* t



CIAPTER 2. PROPOSED QUASI-STATIC MODEL 27

we decouple the mass matrix and finally get

1 + g- M.,, sin2  t + ,-n T -,,, sin-
MI. i/ -kv sin w" k,

_M+M) S _, 0 M." E+ Co 0=

{ -(M..+)M,)sin ' }0 1
(2.25)

These equations are the same as the ones obtained by Biggs when we neglect

all terms in e . So, the method of CMS gives the right answer when e << 1

which is the case for systems with slowly-varying coefficients.

2.2 Modal Representation of the Robot Corn-

ponents

In order to use CMS, each component of the robot must be represented by

its rigid body and elastic modes, and these modes must be tridimensional.

The robot components are seven as can be seen in Figure 2.2. They are

called STR, X, Y, Z, MX, MY, WIZ whose description is given below. The

cartesian robot is mounted in the Artificial Intelligence Laboratory of MIT

in building NE43. It was designed and built by a team of students under

the supervision of Prof. Warren P. Seering. .'-

STR: The component STR is formed by the structure that holds the car-...

riages and it also includes the dynamics of the floor on which it is

mounted, that is the 9th floor of Building NE43 of MIT. This struc-

ture has on its top part two parallel ways which guide the Y-carriage

when it moves. This structure is formed by 6 pieces joined together by .V
, -
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long and thick bolts so that a large torque can be applied to tighten

them, thus avoiding any creep-friction problem that would introduce

nonlinearities in the vibration analysis.

Component X: The component X is the X-carriage which moves in the

X-direction; it is supported by the ways of the Y-carriage and it

supports, in turn, the Z-carriage. When it moves it is acted upon by

the motor MX through a lead screw.

Component Y: The component Y is the Y-carriage which moves in the

Y-direction; it is supported by STR and it supports, in turn, the

X-carriage. It is acted upon by the motor MY through a lead screw.

Component Z: The Z-component is the Z-carriage which moves in the

Z-direction and is supported by the X-carriage. It is acted upon by

the MZ motor through a rack and pinion transmission.

The component STR being fixed to the floor does not have rigid body

modes, but the rest of the components do have, and to calculate them it

is necessary to know the mass and inertia properties which are shown in S

Table 2.1.

Before calculating the rigid body modes, it is necessary to specify the

points on the structure to be measured. These points must include at least

the connection points of the components, and for the case of the parts that

have ways that slide, we take as many points along the ways as possible.

The rigid body modes are six in general, three rigid body translations

along X,Y, and Z directions and three rigid body rotations about those 3

axes. It can be shown that these modes produce translations in the x, y-,

%, *-
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and z directions which are given by the following formula:

00 (Z-YZ.) 0 X X12) 
__ __ __

65n

J-I vi.v~" 4

(2.26)

where M is the mass of the component, I. is the moment of inertia about

its center of gravity(Xcq, Yg,Z,.) with respect to the X-axis and so forth.

46,. represents the mode shape value of a point with coordinates (X, Y, Z) .0

along the X-direction for mode n. 0.. corresponds to direction Y, and so

forth. 6k,, to 66,, are Kronecker deltas which have the value of zero unless n

coincides with the first subscript, in which case they take the value of one. -

The above formulas are correct when the principal axes of the compo-

nent are aligned with the X,Y, and Z axes but if they are not, then one way

to correct this is by calculating the mode shape values along the principal

axes first, and then rotating them to coincide with X,Y, and Z.

The mass, moment of inertia and position of the center of gravity can

be either calculated or determined by test. For the moments of inertia

we can swing the component as a pendulum and measure the period of

oscillation To, and from it we can calculate the moment of inertia by means

of I'V = -MgLTJ - ML2 , where L is the distance from CG to the center ".., ,,

of rotation.This method seems to be simple to use but it is very sensitive

to errors when L is short and the position of the center of gravity is not -h

precisely determined. Another procedure consists in using flexible strings

to obtain a rocking motion as well as a translational motion from which

the monient of inertia can be determined. The way we proceeded was to 6 0

?
V1 V

?'%,e,
•~~ 0, Ir % k '.W. N



CHAPTER 2. PROPOSED QUASI-STATIC MODEL 31

do analytical calculations of the moments of inertia. .0

With regard to the elastic modes, each of the components, with the

exception of STR, was tested on a free-free condition, that is, "floating"

by mounting it on soft foam pads; then the Impact Test was applied to

a series a test points(the same used for rigid body modes), and the mode

shapes obtained. These mode shapes can be expressed as arrays where the

number of rows is the number of degrees of freedom (3 for each point times

the number of points) and the number of columns is the number of modes.

I 4

A pictorial representation of these modes (in three dimensions) was ob-

tained in a Structural Dynamics Analyzer to check continuity and compat-

ibility of the modes (to find out if there were bad measurements).

The structure STR was tested differently since it was attached to the

floor. Here the modes were obtained by a random excitation test using

an electrodynamic shaker. The test points along the ways were marked at

1-inch apart to have good resolution, since the Y-carriage runs over them.

The frequency range for each of the main components varied since each

one had its own frequency interval and we wished to have a minimum of 5

elastic modes of each component. Table 2.2 shows the natural frequencies

determined for each of the main components. The mode shapes can be seen

in Appendix A .

The components MX and MY which are motors coupled to lead screws

were treated in a special way. MY is mounted on STR and its dynamics,

other than torsion, were already included in the test done on STR. Similarly,

MX is mounted on the Y-carriage and it was tested already, except for

torsion. So, all we i!ec(h.d w~is to cahilate the torsional iiiodes of MX arnd

S e.
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MY. These were as shown in Table 2.3. The component MZ has a short

shaft with a pinion at the end, and it was modeled as being rigid in torsion.

The niodal analysis method employed by the Structural Dynamics An-

alyzer involves curve fitting the transfer functions to determine the modal

parameters of the component. This technique, which calculates eigenvectors

by assuming the existence of only one mode at a time, is not very accurate,

that is, it does not give correct absolute values of the mode shapes. The

relative values it predicts are probably more reliable.

In order to normalize the elastic mode shapes (for unit modal mass), a

convenient step when formulating the equations of motion based on exper-

imental data, we proceeded as explained in the next section. S

2.3 Modal Parameter Identification
* S

When a modal test is performed on a structure, we obtain the natural fre-

quencies and some scaled version of the mode shapes. This information

represents a family of dynamically similar structures, and it is not until we

determine the right scaling factor to normalize the mode shapes that we S S

have really identified the particular structure under test. This normaliza-

tion factor is difficult to obtain with accuracy, when working experimen-

tally, because we have to make assumptions about the modal damping in

the structure when we use transfer function measurements. So, even though

there are many algorithms to curve fit the measured transfer functions as

discussed below, the calculated mode shape values (or scaling factors for

normalization) will depend on the algorithm used, and there is an impor-

tant variance in the results. This in turn results in an uncertainty in the

predicted results of CMS.

There are a number of ways that people have proceeded to normalize 0 0
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the mode shapes based on experimental data. One simple approach used

in exact analysis of continuous systems, which may work for structures of

simple geometry (like a uniform beam for example) consists of applying

the formula for normalization of a continuous beam: C = I 2z

where C would be the scaling factor to get the correct mode

shape {} = C{ik}. This formula can be extended to other simple shapes

where we integrate over the contour: C ; / , .

Another procedure to find the correct mode shape values is based on b

multi-excitation of the structure [66], in which the structure is excited at

several points simultaneously in such a way as to excite one single mode

of vibration; then the vibration is measured at each of the test points and

that vibration gives the mode shape directly. This method which implies

having more sophisticated equipment was not used in our laboratory.

The most common method used is based on a drive-point transfer func-

tion measurement [77], which in our case was obtained with high frequency

resolution, and then a curve-fitting technique was applied to it to extract

from each mode its modal parameters. One of the formulas for the drive-

point transfer function is :

H(w) = Aw2 + B + ( (2 .27

k= 1 k W

where w is the frequency, A and B are parameters appearing in Aw2 which

represents the contribution of the higher modes, and B which is the con-

tribution of the lower modes. Each mode has three parameters: Wk is the

natural frequency in rad/sec, k is the modal damping ratio, and O is

the true mode shape value at the drive-point. This formula assumes the i -

following idealizations:

* Damping is linear and viscous. '
Do

" Daiaping is proT)potioiial.

0
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In order to get these modal parameters, different algorithms that curve- e
fit the experimental data have been prepared, some of them assume there

is one dominant miode only, and they compcnsate for the other modes

assuming these are far apart. In this single mode group of techniques we can

mention the circle fit to the Nyquist polar plot (real part vs imaginary part

with frequency as a parameter), the quadrature picking, and the rational

fraction least squares [11].

Another group of techniques make multimodal curve fits to the trans-

fer function. In general they involve a large number of iterations. They

may also have problems of convergence since these are nonlinear paramet-

ric fits (linear in O'k, nonlinear in Wk and s/), and an iterative procedure

is necessary. Among these methods we can mention the method of ratio- Y'.

nal fraction polynomials [11, the Marquardt Algorithm [54], and Global

Fitting [24]. Brown, Allemang, and Zimmerman (11] describe parameter

estimation techniques that can be used to determine modal parameters , -f*

from experimentally measured frequency response or unit impulse response

with particular details on multidegree of freedom techniques. Mori [54] dis-

cusses an efficient implementation of the Levenberg-Marquardt algorithm

and shows that it has very strong convergence properties.

The way we proceeded, which was easy to use and readily available,

was to utilize a Simplex technique that minimizes the sum of the squares

of the residuals (or the differences between the data and the correspond-

ing calculated values based on succesively improved parameters). Caceci

and Cacheris [12] present this technique of curve fitting and discuss its

application, advantages and disadvantages. The Simplex program used for

curve-fitting admits any function, linear or nonlinear, whose coefficients are

the parameters to be determined. We used equation 2.27 with the modal

parameters to be adjusted Wk, k, and Ok with n varying from 5 to 13

-.

N,.
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Figure 2.3: Curve fit of transfer function --V.,

according to the component. We first tried to determine all parameters

simultaneously, which are 3n, but the process was converging so slowly (if

at all) that we could not proceed. Then, taking as initial values for these 1%,NC

parameters the values obtained by a single-mode curve-fitting technique,

we applied the Simplex method to the determination of three parameters

at a time (for one mode), but using equation 2.27 with all the modes of %

interest. Here convergence was achieved in a small number of iterations.

Then we proceeded in the same way with each of the subsequent modes, S

each time updating the corresponding parameters. This procedure tended p

to converge a little faster. One of the results of the curve fits is shown in

Figure 2.3.

%

L, 
N . \-
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load applied by

~housing ¢

lead screw

Figure 2.4: Detail of lead screw and nut "

2.4 Physical Connection of the Components

Before applying CMS we have to define the degrees of freedom of each

connection, that is, the vectors representing the motion of the points of

connection. This depends on how the components are physically connected.

When the carriages are constructed to form the cartesian robot, they

are connected by means of preloaded cam followers that run on straight

bars or ways as illustrated in Figure 2.6 . There are a number of these

connections between each mating pair of components as can be seen in '.

Figure 2.5. With regard to the connectLon of the lead r(r,.ws, there is a

special nut mounted on the component to be moved, wit lubricated balls

inside, thus transforming the rotation of the lead screw into a translation

of the carriage. (see Figure 2.4).

Since the cam follower acting on the way exerts a normal force (if friction % %

is neglected), we can consider as the degree of freedonm in that connection
' 

e

% %

rn'+,:S ,
WE /\.I%~~~ % *~. % % '\% .% %~ %-, .' . -',
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Figure 2.5: Schematic representation of physical connections

**% ,%.
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vam follower

NL,

schematic representation

Figure 2.6: Cam followers on ways

one coordinate or vector perpendicular to the way. Friction is accounted

for by putting (in selected positions only) one vector(degree of freedom)

parallel to the way. The nut that connects to the lead screw is represented . ,

by a vector(degree of freedom) parallel to the lead screw axis. So, the

degrees of freedom of all these robot connections are defined as schemat-

ically represented in Figure 2.7. Notice that we use translational degrees

of freedom, but not rotational ones. Bending moments and torques are
transmitted between two components by using several degrees of freedom *

in the connection.

Friction was included as a friction degree of freedom because the pre-

dicted mode shapes of the synthesized robot(without friction degrees of

%S

Ivt

Pi ~ .~ ~% P
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Figure 2.7: Degrees of freedom of physical connections
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freedom) showed a relative motion between the parts which was not ob-

served in the experimental mode shapes. There is also a more fundamental

reason for including the friction degrees of freedom; a Coulomb friction

force opposes motion and tries to equilibrate forces until it saturates, that

is, when its static limit is reached. This saturation makes its behavior

nonlinear as opposed to a linear spring, for example, which ideally never

saturates. So, if we assume that the forces never reach saturation, and that

is because the cam-followers are preloaded against the ways, then we can

say that the friction effect is like a bolt joint which does not allow slide

motion during a cycle of vibration. Nevertheless, to avoid redundancies we

introduced only a selected number of these friction degrees of freedom just

to prevent some relative motions between components based on experimen-

tal results.

2.5 CMS Model of Connections

After deciding what distribution of degrees of freedom can represent com-

ponent connections and having the modal representation of those individual

components, we can use CMS to establish the compatibility conditions at

the interfaces and end up with a prediction of the dynamic behavior of the

robot. Figure 2.8 shows a schematic view of the connections illustrated in

Figure 2.5 by representing each component with a box and each connection

with an ellipse. The numbers inside the ellipses are the numbers of degrees

of freedom used, whereas the numbers inside the boxes are the number of
modes used..,

The compatibility condition is the starting point for CMS. It says that

the points of connection of two adjacent components have to move together

in the same way, that is, ZA, = x,. A slightly different condition is used

%
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0 00 10
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N

no. inside box: total no. of component modes

no. abovc arrow: no. of generalized coordinates chosen to be dependent

encircled no.: no. of generalized coordinates chosen to be independent

Figure 2.8: Box diagram of Component Mode Synthesis

when we describe the assemblies MX and MY (motor and lead screw). Here,

the motion of the component that is moved by the lead screw is equal to

the sum of the motion of the supporting component plus the translational -

motion of the nut caused by rotation of the screw, that is XA, = XD, + ZLI-.

For example, in Figure 2.9 we show the case of MY, STR and Y. Here, if

Y moves to the right, it may happen that only MY rotates, or only STR

translates, or both move. But in any case the sum of motions of STR and

MY must be equal to the motion of the Y-carriage. Something similar

happens between the Z-carriage and X and MZ..%

The mode shape data of the components can be defined as in table 2.4.

N C5V- %N



CHAPTER 2. PROPOSED QUASI-STATIC MODEL 42

Component Maws(Kg) ( ((u) J. (Kg - m 2) I,, '

z = 359

X-carriage 17.556 y = 451 0.3846 0.18006 0.25495

z = 130

z = 185

Y-carriage 25.4016 y = 471 0.8060 2.0104 2.1081

z =74

x = 368

Z-carriage 12.2458 y = 542 0.7404 0.7404 0.0234

z = -160

Table 2.1: Mass and Inertia properties of Robot Carriages

k

0 MY

(dispi) Yar = (dispi) + (displ) T

Rotation converted to translation v,

Figure 2.9: triple connection

X.S
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Mode No. j STR jX-carriage Y-carriage Z-carriage

1 14.67 168 121 587

2 21.77 218 140 623

3 36.87 431 150 772

4 4G.89 606 181 1115

5 51.78 - 200 1471

6 62.62 - 234 -

7 81.81 - 356 -

8 960.95 393

9 128.37 - 415

10 136.26 - 506 -

11 156.82 -
0

12 176.83 -

13 193.90 

Table 2.2: Natural Frequencies(Hz) of Main Components

Mode f,(Hz),MX 0,(x).MX ff(Hz),MY 0, (x).MY

1 0 259.56 0 254.98

2 1321 346 cos (2.734E - 4w x) 993 298 cos (2.734E - 4w, x)

3 3903 354 cos (2.734E - 4wx) 2979 307cos (2.734E - 4wx) N

Table 2.3: Natural Modes in Torsion of MX, MY.
0

**
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Each component has at least one joint (with several degrees of freedom)

and for each of this joints there is an associated modal matrix for which

the number of rows is the number of degrees of freedom, and the number

of columns is the number of modes. Notice that these modal matrices are

partitioned in such a way that the first submatrix (sufix R) corresponds to

the independent generalized coordinates, and the second submatrix (sufix

0) corresponds to the dependent ones. The number of generalized coordi-

nates for each component can be seen in Figure 2.8. The encircled numbers

above the top boxes, and the ones below the bottom boxes are the number

of independent generalized coordinates.

Based on these compatibility conditions we can establish the following

matrix equation: ApD = Bp' , where [A]{pD} is

FSTROI -FYAIO 0 0 0 0 PSTR

0 FYA20 0 0 0 0 pa

0 0 -FZTO1 0 0 0 Pa

FSTR02 -FYA30 0 FMYIO 0 0 PM,

0 -FYA40 0 0 -FMX1O 0 ] PMX
0 0 FZT02 0 0 -FMZIO PMz

(2.28)

and [B) {p'} is

-FSTRR1 0 FYAIR 0 0 0 PSTR

0 FXAIR -FYA2R 0 0 0 Px

0 -FXA2R 0 FZTR1 0 0 p' %I

-FSTRR2 0 FYA3R 0 -FMYIR 0 %

I

0 -FXA3R FYA4R 0 0 FMXIR pMY

0 FXA4R -FZTR2 0 0 PMX

(2.29)

From this equation we get the dependent elements of the generalized coordi-

nates pD as a function of the indcpendcnt on"- p'. Then, the transformation

.6 % V% % X % - %

Le L~ L.~i A~'~ VV~r * ~ ~ ~
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* S

Topoiient Modal inatrix Size Coutiection (Figure 2.8)

Fixed striture (STR) IFSTRRI FSTROIJ 8 x 13 a

[FSTRI.2 FSTR)21 I x 13 d

X-carriage IFXAIRI 10 x 10 b

jFXA2R) 10 x 10 c

[_FXA3R) I x 10 C

(FXA4R] I x 10 f

Y-carriage [FYAIR FYAIO] 8 x 16 a

[ FYA2R FYA20] 10 x 16 b

[FYA3R FYA30] I x 16 d

[FYA4R FYA40 1 x 16 e

Z-carriage [FZTIR FZTIO] 10 x 11 c

.. ,_[FZT2R FZT201 I x 11 f

Ball screw-motor, X-direction IFMXIR FMX1O] I X 2 e

Ball screw-motor, Y-direction [FMYIR FMYIO1  I X 2 d

Ball crew-motor, Z-direction IFMZ101 1 X I f

Table 2.4: Modal Matrices of Robot Components.

'N

% %
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P

matrix which is implicitly defined by

P [T]{p'} (2.30)

can be formed. So, by following the procedure already described in section

2.1 we can obtain the equations of motion of the cartesian robot, which

for the homogeneous case have a solution described in terms of the natu-

ral modes of vibration. These modes were synthesized in the computer on

the base of the previous analysis and then transmitted to a Structural Dy-

namics Analyzer in order to take advantage of its display capabilities; thus

we were able to see a 3-D representation of each mode shape on the ana-

lyzer screen, the comparison of experimentally determined with synthesized

mode shapes could be conveniently done. Before showing some of these re-

suits, we should discuss some issues about convergence and conditioning of

this CMS process. 0

2.6 Convergence of CMS

As it has been pointed out by several authors, among them Bathe [2], the

technique of CMS makes use of the Rayleigh-Ritz analysis [21 in the sense

that it takes as the Ritz-basis vectors the eigenvectors of the individual

components and then through a linear combination of them, it gives the

best solution available that corresponds to those basis vectors. This is only

an approximation since we are not using all the modes of each component

but rather we have truncated by establishing a finite frequency range of

study.

To understand why CMS is considered a Rayleigh-Ritz analysis and un-

der what conditions this is true, we perform the following analysis. Suppose

we somehow know the complete mass and stiffness matrices of the assein-

of- or ". %, .
. .. ..#',e" "" ,0 r.0 P, if if "%' '" ,, ,'..'"., 

' r "4 ,N ' " " "" " " 
" °

"" " " " " " " " " " " "
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bled system formed by the substructures A and B, but suppose that the

eigenvalue problem is too large to be solved:

[KI[$]- , )MI[,I, (2.31)

We want to reduce the system order from m to s by using the Ritz-

basis vectors € (m x s). In so doing, we are trying to get an approximation

to *, call it €. Put [ 1 = [¢I[xi where [x are the Ritz coordinates to be

calculated.

Then form the Rayleigh quotient

p([) (2.32)

which becomes after substitution of [ ]

40=) E xk (2.33)

where (K] = [ 01T[K]l¢] and [.i= [b][M][€j.

Minimize the Rayleigh quotient:

ap( ) _2in- x z3 ic - 2k E*= xjmr 0(234i =-- i =n- = 0 (2 34)

Usep= to get

_'= I,(li - p'r5,) 0 fori 1, 2,..a (2.35)

This is equivalent to the eigenvalue problem [KI[x] = p[M][x] of reduced

order s which we suppose we can solve. This process parallels the CMS

process as illustrated in Table 2.5.

From this analysis we conclude the following:

* The Ritz coordinates [x] are the same as the product [Tj[1¢' in CMS. 6,

%.
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Concept Component Mode Rayleigh-Ritz

Synthesis Analysis

[K] [ j = \ (M1(I

[O*A ] + [wpIP = {O} [K], [M] are known,

Original['] + [wD]{pB} = {} but not [i].
equations only n modes are known Problem too *

big to solve

Choose

Ritz-basis [0I = ['jA j D a guess

vectors

Apply compatibility: assume [ 0] = [x][z],

pysl [A.j(PA} = [0B.]{PB} minimize p(),physical

Eliminate overconstraining: or minimize
principles {p} - {q} through {p} -- [TJ{q} potential energy.

Reduced

system [T]t [T]{ } + [T]t [j]J[T]{q} = {0} [k][x] = p[M][z]

of order a

Solve

eigenvalue get pi, [k] get pi, [z] 5 0

problem ____________ _______

Approximation Pi

to eigenvalues

Approximation [

to eigenvectors

Table 2.5: Comparison of CMS and Rayleigh-Ritz Methods

w
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" While the Rayleigh-Ritz analysis uses any set of Ritz-basis vectors

to get an approximation to the eigenvalues and eigenvectors with a

precision that varies according to the good choice of the basis vectors,

CMS uses, in most of the cases, the most adequate vectors (a set that

includes the first n modes of each component), although the use of a

truncated set precludes getting the exact solution.

" As the number of modes used in the analysis increases, CMS converges

monotonically from above in one of the fastest ways possible since

each addition of a Ritz-basis vector is one of the best vectors that can

be added.

" In the Rayleigh-Ritz analysis, the use of a complete mass and stiffness

matrix to get the reduced system, and then the application of a min-

imization process to the Rayleigh quotient is equivalent to applying

compatibility conditions in CMS. Both methods lead to the reduced

system of equations whose eigenvalue problem solution gives the Ritz

coordinates [z] = [T][k].

* If the Rayleigh-Ritz analysis uses as basis vectors the eigenvectors of

the substructures, then it leads to the same answer obtained by CMS. .%4

" In practical cases [K] and [M] are not known, so we do not apply

Rayleigh-Ritz analysis, but its principle is implicitely used in CMS.

The results obtained for the eigenvalues and eigenvectors of the assembled

robot are approximations to the real values, and it has been shown for the '.'." N,

Rayleigh-Ritz analysis [2] that the convergence is monotonic from above,

that is, the more modes we use from the components, the closer we get %

to the real results. But this method always yields eigenvalues that are

higher than the exact ones. The rate of convergence can be deterinirled

" - % V % % V, %. %' "
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Figure 2.10: Convergence of Ist natural frequency with number of modes 4
used

numerically by simply comparing two sets of eigenvalues, one obtained with

a given number of modes and the other obtained with one mode less for

any of the components; then we can determine whether the convergence

is satisfactory or which component needs more modes. To illustrate this

convergence rate, consider the case of a free-free beam whose modes are

known (see Table 2.6). If we connect it to a fixed support near the end to

have a pinned-pinned-free beam, and we compare the first natural frequency

of this so supported beam as obtained by CMS to that obtained from its

formula (see Blevins [10]), we can see the effect of using more and more

modes of the free-free beam as is shown in Figure 2.10.

We should point out that this monotonic convergence from above can

only be seen when the modes of the original component are correctly nor-

malized. This can be done exactly in theory, but in practice, as we have

discussed berore (section 2.3), there is always an uncertainty on the nor-
p4.

.% i .
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iralization. Therefore this convergence pattern may be different, that is, S

the convergence may be towards a set of eigenvalues other than the true

values.

2.7 Conditioning of the Numerical Process

When applying CMS to connect two or more structures, and when more

than one point of connection is used, an ill-condition may arise. Ill condi- ,

tioning is a situation in which a slight change in the data produces a big

change in the results.

The numerical process in CMS includes the inversion of a matrix (see

equation 2.28) plus the solution of an eigenvalue problem, and either of the

two or both operations may be ill-conditioned. To detect this problem we

follow the procedure described below.

Turing [761 describes a way to determine the conditioning for matrix .

inversion; that is, given the problem [AJ{z} = {b}, we want to know

what effect a slight change in {b} produces in the result {z}. It is found

that Az, = 'Ab, = (A- 1),;Ab, , so the biggest element in [A) - ' de-

termines the condition number. For the case of CMS, where we have

{p') = [A] 1-([B1{p'}), we proceed as follows:

" Run original case and get eigenvalues.

" Find most sensitive degree of freedom in b - Bp' by finding j for

biggest =(A 1 ),

" Alter mode shape value for most sensitive degree of freedom of B by

1 % and get the new eigenvalues.

" Compare corresponding eigenvalues.

.9'
in%. 'N'%' '' ,''' .%'% '.''''. %" ," - "" "" "- ". %"'."".""."","'."%" % ' " " %" '." " /" ", ' " '' ' .N,'%, ' %, ,r '... . %. : --..5-
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This problem of ill-conditioning was present for an early model of the robot

joints as shown in Figure 2.11. Two of the degrees of freedom in the X-

direction were redundant, and when connecting the robot components, the

first resultant two modes of the robot were unexpectedly high. By applying

the above procedure we found that the alteration of I % in the most sensi-

tive degree of freedom produced 2.07 % and 1.47 % change in these two first

modes respectively. The problem disappeared when two degrees of freedom

in the X-direction were removed (two from the front). Then the change in

the two modes was -0.04 % and 0.03 % and the natural frequencies were

reasonable as expected. This elimination of two degrees of freedom in the

X-direction did not affect the predicted robot eigenvalues appreciably, at 'A

least in the frequency range of interest. Y.

In order to identify possible redundant degrees of freedom we can pro-

ceed as follows. In 3-D there are at least 6 degrees of freedom to be used

since that is the minimum required to connect two rigid bodies. The way

these degrees of freedom are distributed can not be arbitrary since they

have to prevent any possible relative motion (translation or rotation) be-

tween the connecting parts. If the bodies are flexible, we can start adding

more degrees of freedom and here is where a redundant combination may

give problems. The most sensitive degree of freedom as indicated by the

largest element of A is a good candidate at which to start looking for re-

dundancies. In the case of the robot, an explanation of why an ill-condition

was present is that the first two mode shapes (the ill-conditioned modes)

are like a rigid body rocking on torsional springs at the floor, but when .

we connect the carriages on the top of the structure, we are trying to infer

from a distant section (top of the robot) what this addition of inertia (of , ,.

the carriages) will produce, and this addition is introduced redundantly I"AN

since only two degrees of freedom in X-direction are necessary.

V, V~ 5
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z

yS

f f
-"Imp

SRY-cmnriage X-carriage Z-carriage

L - lead screw-nut degree of freedom

f - fricton degree of freedom

p - rack-pinion degee of freedom

R - pair of redundant degrees of freedom

Figure 2.11: Redundant degrees of freedom causing ill-condition
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S S
AMPA

Figure 2.12: Synthesized mode shape 1 of robot

2.8 Predictions of Quasi-Static Model

For a given configuration, that is, for a fixed position of the carriages, vi-

bration can be described by means of the natural modes of the system. Our

model of CMS can predict those modes and the Structural Dynamics Ana-

lyzer can display the motions. Some of the results axe shown in Figure 2.12

and Figure 2.13. For more detail and comparison between predicted and

measured mode shapes, see Chapter 4 and Appendix A.

% %
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Mode No. fn(Hz)

1 0

2 0

3 135

4 373

5 731

6 1209

7 1806

8 2522

9 3358 5

10 4313

Table 2.6: Natural Modes of a Free-Free Beam

SS

9 S

Figure 2.13: Synthesized mode shape 2 of robot



Chapter 3

PROPOSED DYNAMIC

MODEL OF A CARTESIAN

ROBOT

3.1 A Procedure to Analyze Systems of

slowly-varying configuration

Here we discuss the possibility of extending the method of CMS to systems

which have equations with slowly varying coefficients, which is the case of

this and many other robots as discussed below. We apply this method to

the case of a simply supported beam with a 2-degree of freedom system

traveling on the beam at a constant speed. Based on this simple example,

we attempt to justify the use of this method for analysis of a cartesian robot

and we discuss the significance of the errors resulting from the associated

approximations.X

As discussed in Chapter 2, in the example of a moving two-degree of

freedom system on a simply supported beam, our goal is to apply CMS

56
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to connect the robot components in such a way as to take into account •

that some of the points of connection may be slowly changing with time.

We do this by putting as the argument of the eigenfunctions of the linear

bearing surfaces (ways) some function of time that describes how the points

of connection are moving. This procedure, as it was applied to the beam

problem is valid when e << 1, that is when we can neglect some terms in

c in the general equations of motion. For a typical bridge the value of E

falls in the range of 0.10 to 0.20. In the case of the robot, these parameters

depend on which direction the carriages are traveling,; for each of three

directions X,Y,Z the results are as shown in Table 3.1. Since E is small, we

can classify the cartesian robot as a slowly-varying system; so, besides the

fact that we can neglect some terms in i and apply CMS directly to derive

the equations of motion, we can make further use of the slowly varying

characteristics (if desired) to find approximate solutions to the equations

in an efficient way.

There is a well developed set of techniques for solving such problems

in close form, as explained by Nayfeh [57]. The problems may be multi-

degree of freedom and can contain forcing terms. Nevertheless, the most

straightforward technique to solve the equations is by numerical integration,

and that is what we have chosen to do since we first want to verify that the

model can represent the real system with reasonable precision.

3.2 Determination of Continuous

Eigenfunctions

As mentioned before, the relative motion between carriages is constrained

by preloaded cam followers that run on linear bearing surfaces or ways,

and physically speaking this motion is continuous. On the other hand

i1%M
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Figure 3.1: Linear interpolation of mode shape data

the test points that describe the eigenfunctions of these ways are discrete

although they are closely spaced. This situation makes it necessary either

to interpolate between points or to curve-fit using some suitable functions.

We first tried the interpolation techniques because they are easy to

use. The interpolation assumes that the test points give exact values for

the eigenfunctions; that is, that there is no error involved in the measure-

ments. This of course is not the case. We used linear interpolation and

cubic spline interpolation for calculating the mode shape values at the con-

nection points, and to evaluate these techniques we looked at the resulting

variation of the 1st natural frequency of the robot with position; this vari-

ation should be smooth and could be checked experimentally. So, we found

that the linear interpolation gave an irregular modal variation as shown

in Figure 3.1, as did the cubic spline interpolation(see Figure 3.2). From

these results we conclude that the problem must involve the presence of

nieasuremcnt errors. *

V 0
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Dire'ction Doituit f,,(Hz) Way Lenth(in mX. ~p~~u~[Valfl of

X 12.4 .270 1.27 0.18

Y 18.9 .584 1.27 0.00

Z 48.4 .152 1.27 0.08

Table 3.1: Typical Values of c for Cartesian Robot

e.. e f
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Next we tried curve-fitting the eigenfunctions over the test points on

the ways, in the least squares sense, in order to smooth out the errors.

One attempt was to use Chebyshev polynomials of different orders. These

polynomials are defined by:

To(z) =

T(x) == (3.36)

T. j(z) = 2zT.(x) - T-

and they are orthogonal polynomials with some convenient properties for S S

curve-fitting. Figure 3.3 and Figure 3.4 show the curve fits for orders 3

and 5 for a particular case. The corresponding modal variations are shown

in Figure 3.5 and Figure 3.6. One observation on the use of Chebyshev

polynomials is that they give more weight to the end points of the ways

which is an undesirable characteristic because good data may be difficult

to get at these ends. Examination of the results showed that the modal

variation is very sensitive to choice of the order of the polynomial fit chosen.

This is a clear indication that the method is not robust.

Therefore, we chose to proceed by developing a method to fit beam-like

eigenfunctions in a least squares sense to experimental data collected on the

ways. The ways can be considered as beams whose boundary conditions

have to be defined. If the beam is uniform, the eigenfunction is defined by:

(z) = C sin(/z) + C2 cos(,6z) + C3 sinh(,8x) + C4 cosh(Gx) + C5 (3.37)

where the parameters C, to C5 and 8 depend on the end conditions of the

beam and z is a coordinate along the beam (see Appendix C for details). l

Curve-fitting this function to the data, in order to find the parameters,

involves doing a nonlinear parametric fit (nonlinear in 3) which may have

multiple solutions depending on the initial guesses for the parameters. The"",

method used was again based on the Simplex technique, where we spec-

ify any function we wait and the simi of the square of the residuals is • •tw
' ~ ~ N V.. %' *4 N" 71 j' * ', e '4 e, .,, €, ,e ." ,-== , e . ,p-' .
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Figure 3.7: Two different solutions to the curve-fitting of mode shape data

using a beam-like eigenfunction

minimized. To find a good solution we have to do several curve-fitting

calculations using different initial values of the parameters each time, and

then choose one result that has the minimum standard deviation. Fig- "

ure 3.7 shows two different solutions to the curve-fitting of one case; nctice * *

that the best fit has a standard deviation of 5.3E-3 whereas the bad fit has

9.6E-2. Figure 3.8 shows another case where the data is generally good and .-.-.

Figure 3.9 shows the case where there is noisy data. So, the idea of the S

equivalent beam smoothes out the errors and at the same time introduces

the physics into the problem. When these beam-like curve fits are used to

connect the components of the robot, the modal variation looks reasonable

as expected(see Figure 3.10).

This curve-fitting technique that assumes an equivalent beam was only

used for the cases where a motion normal to the ways would occur. For

exatlple, if the axis is positioned along the Y-direction, then only ek(x) and

_ I,

'04 .- V x--w X.6V VW,,r-F .,f,,
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Figure 3.8: Curve fit of mode shape data using a beam-like eigenfunction,
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4(z) would be curve-fitted with beam-like eigenfunctions, and 0(y) would

be done with a straight line which would be a good model for tension or

compression of a unifor u bar. The number of curve fits done for the robot

was as shown in Table 3.2.

3.3 Equations of Motion

There are four different levels of equations involved in the vibration analysis

of the robot. These are:

[MI{i} + [C){i} + [K]{z} = {} (3.38)

{P} + [2 ,w]{/} + [W2]{p} = [0('{F) (3.39)

[m]{ } + [c]{4} + [k]{q} [Ti*[01'{Fl (3.40)

{i} + [2,w,I{*]} + [w2]{r} = [] t [T]t [OIt(F) (3.41)

The first level or equation 3.38 represents the real vibrations {x} of the
robot before it is connected; that is, when each compon ent vibrates sepa-"' ,i
rately in an isolated way. The second level, or equation 3.39 is obtained

from equation 3.38 by operating with the modal matrix [J which decou-

ples the equations. Equation 3.40 represents the connected robot and it

is obtained by using the transformation matrix [T] that operates on equa-

tion 3.39 to connect the components since it contains the compatibility

conditions (see chapter 2). These equations are coupled again. Finally,

level 4 is the decoupled set of equations 3.41 that is obtained from equa- VN

tions 3.40 by operating with the modal matrix [,]. To transform back to

{x} when we know {r} we can use the following equation:

{z} = [¢] [T] [i¢b{r} (3.42)

Before describing the procedure followed for the solution of these equations,

we shall discuss the driving functions.

- ~ ~'~' - '-~~~ *~ ~' ' '-~ ~ ~**** %
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3.4 Force Analysis and Prescribed Motion

So far in this thesis we have dealt with the left-hand side of the equations,

that is, the part that describes the homogeneous solution of the system. The

right-hand side which contains the forcing terms that excite the system

are described now. When the carriages move, the inertia forces and the

gravity forces acting on a system that changes configuration tend to excite

vibrations on the structure, and so the forcing terms are associated with S
the motion of the carriages.

In order to leave out the control system that causes the motion, and

consider only the structural vibrations, we measure the motion of the motor

rotor including torsional vibration during a prescribed robot motion and

use this information as prescribed motion at the motor rotor to drive the

equations of motion.

With regard to the interface between the carriages and structure in the

model we can do the simulations in two different ways:

1. At a given instant the carriages can be assumed not have relative

motion, so they are pinned to the ways, but those pins are slowly

changing with time. Here we subtract the rigid body mode by as-

s uming that the carriages are rigid and calculating the reaction forces

that occur due to an acceleration equal to the rigid body acceleration.

These reaction forces are then used to drive the equations of motion.

2. The carriages can be assumed not to be pinned to the ways so that

they can slide in the direction of motion. However they have to over-

come a friction force which acts as an external force whose value we

know. Then, at the end of the move we set this force to zero.

Since this second alternative does not require knowledge of the rigid

body acceleration, which strictly speaking is not known, we have chosen to

'-'. .".'".%
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do the simulations of the robot vibrations using this second method.

3.4.1 Prescribed Motor-rotor Vibration

In this procedure we eliminate the forces exerted by the motors from the

equations of motion in favor of the prescribed vibration which acts as a

"forcing" function to drive the system.

The problem, besides being position-dependent presents limitations in

the available data, that is, all we know are the natural modes of each •

component and a series of complex frequency responses from which the

modes were calculated. The problem may be solved in several ways as

explained in Appendix B, but the one that we consider the most suitable

for the characteristics of this cartesian robot is a time-domain technique

which is not restricted to time-invariant systems.

As we have discussed in Chapter 2, the application of the compatibility

conditions in the CMS method leads to a set of coupled differential equa-

tions (equation 2.11 ). These equations represent the complete cartesian

robot, and they are driven by forces exerted by the motors in the presence

of friction and gravity forces. These equations can be decoupled first for •

convenience and then manipulated to eliminate the motor forces by sim-

pie multiplications by constants and adding together different rows of the

system, since the motor forces appear in linear form. In doing this elimi-

nation, the equations become coupled again, and we reduce the number of

equations by the number of motor forces eliminated (maximum of 3 forces,

one for MX, one for MY, and one for MZ). Consequently we must add new

equations, and these come from the relations between the variables r of

the assembled system and the real encoder positions xMX, xMy, or xMZ as .

follows

X,,,x :[¢,XI[T][ }, etC. (3.4,3)
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where [4)Mx] is a row vector coming from the modal matrix evaluated at

the motor shaft.

So, by adding these equations we again have the number of equations

required for the number of unknowns ({r}). The resulting equations can

be represented by

(M') f, (C") i (K) {f}

(mx)(T)() '2 0 i2 0 r xx

(¢M)(T)(O) 0 - 0 + J 7 =I : ; S

(4)mz)(T)(IP) 0 7:r, 0 nX;z

(3.44)

where f, contains the system external forces other than motor forces. These

equations can now be integrated directly to find {r}, and from there the

vibration at any point z can be obtained from {z} = [4][T][0I]{r}.

Notice that we have differentiated equation 3.43 twice with respect to

time in order to obtain a mass matrix which remains non-singular. This is

a convenient situation to have for numerical integration of the equations.

This differentiation of equation 3.43 assumes that the terms in 4 and 4 are

negligible compared to the terms in " and F respectively which is correct

for a slowly-varying system. For the vibration analysis of the moving robot

we moved it always in one single direction (X,Y, or Z) to simplify the

mathematical manipulations.

3.4.2 Friction Considerations

The friction force plays an important role in the robot vibrations. This

force is Ligh due to preload in the cam followers; it normally represents

about 15 percent of the total motor force during motion. -

The friction force has been measured by Benjamin [51 who did a computer-

controlled experiment on the cartesian robot to deternilne the values of the O

a
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Figure 3.11: Variation of friction force along x-direction

friction force along the X-direction of the robot for different positions of

the X-carriage. He modeled this force variation by a straight line which

was fitted to a number of points obtained experimentally. His results are

reproduced in Figure 3.11. For the Y-direction and Z-direction he did not

report any results.

A simple static test measuring the force required to start motion was

done to get approximate values of the friction force for f9ur different posi-

tions along the ways for each direction. From these values we approximate -

a position-dependent function that describes the friction force for any of

the three principal directions.

These forces are used in the model in an attempt to simulate what

®.
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physically happens during the motion. We assume that the friction force is

equal to the saturation value of friction (follows the straight line variation) 0

as long as there is relative motion between carriages and ways. It may

happen that the friction forces reverse sign, and that is when the difference

in displacement between two sliding parts changes sign. This occurs for the

case of motion in x-direction when : Ox carriage] (TJ] - [Oy- c.,,oge](T][,k]

changes sign, where 40x -carrge is the mode shape value at the instantaneous

slide point of the X-carriage, and Oty - cage is the corresponding value of

the Y-carriage. The program has to monitor this difference and adjust the

sign of the friction force accordingly.

As soon as the motion stops, the friction force is assumed to be always

fluctuating between the- saturation value and the + saturation value while

not allowing any relative motion. Under these circumstances the force is

no longer known. To cope with this we pin the carriage to the ways using

friction pins. This means that we modify the model by connecting the

carriages to the ways at the end of a simulated move. This gives a slightly

different dynamic behavior of the structure. In practice we noticed better

correlation with the experimental results when we simply set the friction

force to a constant value during the move and zero at the end of the move; •

this suggests that perhaps there is a little backlash in the nut-lead screw >

connection.

3.4.3 Conditioning of the Encoder Motion

The encoder motion is used as a prescribed motion at the motor rotor

to drive the equations of motion. The optical encoder used gives a dis-

placement (rotation) function which is stepwise continuous as shown in V

Figure 3.12. This displacement when used without any conditioning to

calculate velocity and acceleration gives strong discontinmities mainly in

% %



CHAPTER 3. PROPOSED DYNAMIC MODEL 73
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Figure 3.12: Encoder displacement

the acceleration function because the encoder provides discrete rather than

continuous information (see Figure 3.13 and Figure 3.14). To avoid these

problems we have to filter out the stepwise characteristic of the encoder

measurements; one way is by using a digital filter.

The filter considered is a differentiating, low-pass filter with zero phase- _ q

shift which besides differevtiating the encoder displacement, filters out the

undesired higher harmonics.

This digital filter is a non-recursive type filter because the filter output

g, is calculated explicitly from t h e in p u t ' - fm by means of (.5

UN

n=-

where b,, are the filter coefficients. This summation is an approximation tothe convolution integral where the set of bn constitutes the impulse response

of the filter. These coefficients have to be calculated so that the frequency-

domain effect s is fiprocess coni ot as desired, that is, the lesired

NN
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Com1ponlent INo. of ways No. of iriades INo. of fitsJ

STR 2 13 J 78

y2 10 80
Z4 5 1 0_

Table 3.2: Number of Curve Fits for Way.

=Gum

40AXM

Figure 3.13: Unfiltered encoder velocity

%
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S

-0

Figure 3.14: Unfiltered encoder acceleration

transfer function of the filter Hd(jw) can be approximated by some H(jw) S
through a least squares process. In this way we find b, for n in the interval

[-N,NI.

The general formula for the coefficients, as given by Stearns [72] is

T" ! T , * Hd(jw)e ,,rdTw, -N < n < N (3.46)

We chose to design a filter which would eliminate all frequencies above

130 Hz (this limit being set by the first 10 modes of the robot), and differ-

entiate the displacement history twice as well. An algorithm developed by

though its differentiation is of first order, so we have to do the process twice

starting with displacement to get acceleration. The number of points(N)

was 63.

The impulse response obtained for this filter is shown in Figure 3.15

and the corresponditg Fourier transforni is shown in Figure 3.16, where _

V V V

'A or e %



CHAPTER 3. PROPOSED DYNAMIC MODEL 76

I~o00

Figure 3.15: Impulse response of digital filter

the Nyquist frequency is F = 1500 Hz which corresponds to the sampling

time t = 0.67 ms of the computer-controlled experiment.

The application of the digital filter to the encoder data gives the velocity

and acceleration shown in Figure 3.17 and Figure 3.18 respectively. These

data were collected during a move in the X-direction. Note the component

of acceleration at 87.5 Hz which corresponds to the dominant 8th mode of

vibration (see Appendix A).

3.5 Solution of the Equations of Motion

In order to calculate the time history z of vibrations at any of the test points -.

of the robot we can integrate equation 3.41, truncating to a convenient

number of modes if we want, and then using equation 3.42 we can transform

back to real coordinates. This transformation has to be done at each step

since the matrices involved hi the calculation are position-dependent. Now, S

. .
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Figure 3.16: Fourier transform of digital filter
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Figure 3.18: Filtered encoder acceleration

if we want to have a fast computer model to integrate these equations, we

have to do all the work that can be done prior to the integration, so that

the integration itself is fast and can hopefully be done in real time. For this

purpose, three computer programs were prepared to solve the equations as

described below: O

" The first program calculates the modal parameters at discrete points

along the path, say at every 10 mm. ",

* S
" The second program smoothes the modal parameters using cubic %.%

splines to calculate these parameters at each time step. These two

programs can be run prior to the integration.

" The last program integrates the equations by using the parameters

derived above at each time step. It integrates equation 3.41 with a

4th order Runge-Kutta-Merson algorithm. Then it transforms r to z

to generate a time history at the desired test points. 0

% %-
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This scheme was implemented on a VAX 11/750 computer and the ratio

of computation time to real time was 40 to 1 when we integrated over the

first 10 modes of equation 3.41. To improve this speed for real time control

purposes we could proceed in a number of ways, for example using a faster

computer or trying to use fewer equations in equation 3.41, or even trying

to get asymptotic approximations to these equations with slowly-varying

coefficients, but this is beyond the scope of the present work.

3.6 Some Results of the Dynamic Model

To test the model, a series of experiments were conducted on the robot

which are explained in detail in chapter 4. From these tests, the motion I

at the motor-rotor for the cases of motion along the X-direction, or Y-

direction, or Z-direction could be determined, and it is from this data that

we can prescribe the motion of the carriages to run the dynamic model.

Figure 3.19 shows the vibration at the end-point (test point 144) of the

robot when the carriages are moved in the X-direction. This curve is a time

domain representation and covers the whole motion, that is from t = 0 to

t = 0.57 s. Figure 3.20 shows the robot tip residual vibration (t = 0.57 to 6

t = 0.89 s). Figure 3.21 shows the frequency content of this end vibration.

For the case of the Y-direction and Z-direction see Chapter 4 where we

compare these simulation results to the test results.

. 1. ", ..: ,

V. %
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Figure 3.21: Fourier transform of end vibration in x-direction
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Chapter 4

EXPERIMENTS AND

RESULTS

4.1 Objectives

We are trying to understand how a time-dependent system vibrates in order

to be able to control the vibration and/or design the system in a better way. V

For this purpose we have developed a mathematical model which must then 1, bi

be validated by test.

There are two classes of objectives for the tests described in this thesis,

one is that we need modal data from each of the robot components to be K.

used as input to the mathematical model. The other class of objectives S

is the mathematical model validation which should evaluate the accuracy

of this model. The modal tests which were done to gather input data

are briefly mentioned in this chapter, but fully described in Appendix A.

In contrast, the validation tests are explained with more detail here, and

a comparison with the predicted results from the mathematical model is

presented.

Wc vill discuss four differenit types of tests. The first two provided data-. \h

82

%~% %..*..% % %.~ %



CHlAPTER 4. EXPERIMENTS AND RESULTS 83

for the model; the last two were used in verification. The tests included

" Modal tests to determine natural frequencies, modal damping and

mode shapes.

" High-resolution transfer function measurements for orthonormaliza-

tion of eigenvectors. ""

* Measurements of modal variation with position of the carriages.

" Measurements of robot vibration when the carriages are moving.

4.2 Modal Tests

The theory of modal analysis deals with two kinds of modes, normal modes

and complex modes. The type of modes depends on the damping behav-

ior of the structure. Caughey 114) presents an analysis of the conditions

under which a damped linear system possesses classical normal modes. He .-

concludes that the damping matrix must be diagonalized by the same trans-

formation that uncouples the undamped systems. Meirovitch [53] gives a I
.

A

modal analysis procedure designed to handle the general case of damping.

The modal analysis as is done in the laboratory with the use of digital

equipment may utilize either of the two methods, although in general real

structures should be analyzed using complex mode theory. Ibrahim [40]

explains the errors involved in the normal mode approximation to complex

modes, concluding that even for lightly damped structures this approxima- .0.1%

tion may lead to large errors. Potter [62] and Potter and Richardson [63]

explain the theory of comaplex modal analysis showing how to calculate

modal vectors from a measured transfer matrix. N-6N

With regard to vibration tests, Mustain [561 shows the results of a survey

of miodal vil)ration lest/anailysis tecliniqiies in the USA. Favot|r, Mitchell,

% .

, . .
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and Olson [23] discuss the historical development of transient test tech-

niques utilizing a digital computer. Halvorsen and Brown [28] describe the

impact procedure, its theory, applications and limitations. Ramsey and

Richardson [65] present a brief review of modal analysis based upon the

identification of modal parameters from measured transfcr functions. They

point out the advantages of a band selectable Fourier transform (zoom

transform) for obtaining increased accuracy, resolution and dynamic range

in the measurements. Richardson and Kniskern [66] present an algorithm

that reduces error in the mode vector when using more than one simple row

or column of residue data( more than one excitation point when using a

shaker, or more than one response point when using a hammer). Okubo [59] 

analyzes the effect of nonlinearities on transfer function measurements with

impact excitations. With regard to nonlinearities in Structural Dynamics,

Crandall [19] discusses the nature of nonlinear structural models and sur-

veys a variety of nonlinear response phenomena which can be predicted by

such models.

For the modal tests, we have in the Acoustics and Vibration Laboratory

an HP-5423A Structural Dynamics Analyzer. In conjunction with measur-

ing instruments to determine acceleration and force, and with excitation

means like an electrodynamic shaker or an instrumented hammer, the An- e

alyzer provides adequate facilities for our purposes. This Analyzer assumes

proportional damping when doing modal analysis calculations.

The vibration tests performed on the robot components to obtain input

data for the mathematical model are explained in detail in Appendix A. -- '- '-

Basically we obtain from 4 to 10 elastic modes for each component, which in

addition to the corresponding 6 rigid body modes, give a sufficient number , %

of modes for the model to provide convergence. PP

Of more interest in this chapter is the validation test performed on the 0

*1I ?.; , ,..
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completely assembled robot which wits tested in the configuration shown in 0

Figure 4.1. Here the X-carriage and Y-carriage are in the middle of their

respective way paths, and the Z-carriage is all the way down. The test

set-up is shown in Figure 4.2. A Bruel and Kjaer electrodynmunic shaker

type 4801 with mode study head type 4814 was used to excite the structure

at the test point no. 145 in the -Z direction while a triaxial accelerometer

B & K type 4340 was used to transmit acceleration to the analyzer via

a charge preamplifier B & K type 2628. The force was measured by a

Wilcoxon impedance head attached between the shaker and the structure.

For each of the test points where the accelerometer was attached, and for

each direction (X,Y, or Z) a transfer function made of 50 to 80 averages S

was calculated and stored in the analyzer. The frequency range was 0-200

Hz in the first set of measurements, and 0-25 Hz in the second set with a

total number of measurements of 405 for each test.
4.1-

A typical transfer function is shown in Figure 4.3, and the natural fre-

quencies and modal damping factors are shown in table 4.1. Here in this

table we also show the corresponding predicted values obtained by the

mathematical model. The first 4 mode shapes as obtained by test are

shown in the top part of Figures 4.4- 4.7 whereas the corresponding pre-

dicted modes are shown in the bottom part.

Comparing the experimental and synthesized results we notice that the

avrage error in the first 17 natural frequencies is 6.9 %. The mode shapes

show the same type of tridimensional motion for both sets of results.

We believe that this agreement is close enough and that the math-

ematical model can also predict the modal characteristics for any other

configuration with comparable accuracy.

0
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Figure 4.1: Robot configuration for modal test ..
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Figure 4.2: Test set-up for modal analysis 0
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%

Mode Measured Prcdicted

No. f (Hz) J (%) f, (Hz) I (%)

12.36 1.98 11.93 1.45 I S

2 18.85 1.65 19.17 1.45

3 36.36 1.42 36.87 0.78

4 42.83 9.52 46.34 3.30

5 47.83 4.90 49.53 2.54

6 60.51 3.24 61.38 1.45

7 70.72 0.89 75.06 1.82

8 81.47 1.95 96.47 0.63

9 86.67 1.74 101.75 1.41

10 97.70 1.17 123.39 1.30

11 112.52 7.39 126.84 1.06

12 126.27 0.10 128.72 0.75

13 139.43 2.62 141.05 1.16

14 149.85 1.00 145.68 2.86

15 152.34 0.66 148.23 2.76

16 178.12 1.79 169.39 1.04

17 184.37 0.01 179.06 1.11.-.' -'

Table 4.1: Natural Frequencies and Modal Damping Factors.

0 0 'II
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Figure 4.4: Mode shape no.1 of robot as obtained lby test (top) and by '

synthesis (bottomi)
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Figure 4.5: Mode shape no.2 of robot as obtained by test (top) and by

synthesis (bottoni)
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4.3 High-Resolution Transfer Functions S.

The HP analyzer calculates transfer functions using 256 complex numbers

for equally spaced frequencies in the specified frequency bandwidth. This

resolution can be increased by repeating the test with different cente-

frequencies, and so, ending up with several transfer functions that can later

be collected into one single plot outside of the analyzer, in a computer.

We transmitted these transfer functions to a PDPI1/44 computer through

a GPIB interface. The resultant high-resolution transfer function which

contains detailed information around each mode of interest can be used

to get more accurate estimates of the modal parameters, particularly the

mode shape value for orthonormal eigenvector as explained in chapter 2.

Two of the robot components were tested for these high-resolution trans-

fer functions; the robot structure (without the carriages) attached to the

floor, and the Z-carriage. Detdils of the test are given in Appendix A.

One of these curve-fits for the Z-carriage is shown in Figure 4.8. As was

discussed in chapter 2, the results may seem accurate but there is an impor-

tant variance when we apply different curve-fitting methods. For example, N

if we change the initial conditions of this nonlinear parametric fit we get ,,

the curve fit shown in Figure 4.9 which may seem a very similar result but V

the mode shape values differ from 5 to 25 percent depending on the mode,

and that happens because damping changes as well in such a way that the

combination of 01, wk, and 1, gives another solution of the nonlinear prob-

lem. Therefore, this difficulty in the system parameter identification may -

preclude good accuracy of the mathematical model.

% %
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Figure 4.8: Multimodal curve fit no.1 of transfer function of Z-carriage
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Figure 4.9: Multimodal curve fit no.2 of transfer function of Z-carriage
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4.4 Modal Variation with Position

A position-dependent system changes its modal characteristics as it changes

configuration. The cartesian robot shows slight changes when the rela-

tive position of the carriages change. In order to partially evaluate these

changes, the robot was tested in different configurations obtaining for each

one a single transfer function which may show at least the variation in

natural frequencies. Table 4.2 shows these variation for the 1st mode as •

well as the corresponding calculated value from the mathematical model.

Table 4.3 shows similar results for the second mode.

These tables (4.2 and 4.3) and the set of mode shape plots show in gen-

eral good agreement between experimental and calculated results. Based

on this and on the results of section 4.1 we can generalize the validity of

the model to the whole work space of the cartesian robot. Table 4.4 shows

the variation of the first ten natural frequencies along the Y-direction for

different positions in the X and Z directions (calclated from the model).

The values of Y (mm) represent the position of the Y-carriage as measured

in the global system of coordinates.

4.5 Vibration of Moving Robot

The final objective of this thesis is to be able to predict the vibrations of

,.ny part of the robot as the carriages move, and the experimental results

described in this section permit evaluation of the model simulations. Three

different experiments were carried out:

" Motion of the carriages in the X-direction only.

" Motion in Y-direction.

" Motion in Z-dircction.

*
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Position of carriages ] fj (Hz) mcasur,,d f, (Hz) predicted)

X/r,,t, Ymiddle, Zdon 11.80 11.98

Xfrant, Ylf t, Zdwn 11.22 11.70

Xniidie, Y,,,idde, gdown 12.36 12.05

Xmiddle, iYLeft, Zdown 10.94 11.75

Xw, Iddle,, ,ide, Zup 11.49 12.27

Table 4 2: Modal Variation with Position, first Mode.

S

Position of carriages f2 (Hz) measured f2 (Hz) predicted)

Xftot, Yidde,, Zd.oj 18.90 19.09

X n,,, YletI Zd,,, 19.03 19.23 %

Xd, Y,Zde,,, dm, 18.85 19.17

Xmtddle, Yeft, Zdon 17.97 19.31

Xiddle. Y,,iddle, Z,,p 18.82 19.15

lable 4.3: Modal Variation with Position, second Mode. %

x ]

S4- 4,6

* S
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Table 4.4: Variation of Natural Frequencies (Hz) with Position for the First

Ten Modes, according to the model. V

X back Z top -. .

Y= 422.28: 12.1 19.3 36.9 47.9 49.9 61.1 69.9 88.7 101.9 105.4

Y= 578.07: 12.4 19.2 36.9 48.3 49.8 61.6 71.0 91.0 102.1 110.4

Y= 733.85: 12.5 19.1 36.9 47.9 49.9 61.8 72.0 92.5 101.1 106.8

Y= 889.64: 12.7 19.1 36.9 47.6 50.0 62.0 72.5 93.1 100.4 107.8

Y=1006.48: 12.9 19.0 36.9 47.2 50.1 62.1 72.9 93.5 99.8 108.1

X back Z middle

Y= 422.28: 12.1 19.3 36.9 47.7 49.9 61.2 69.5 90.1 101.6 119.2

Y= 578.07: 12 4 19.2 36.9 48.0 49.9 61.7 70.8 92.7 106.1 121.5

Y= 733.85: 12.6 19.1 36.9 47.6 50.0 61.9 71.8 93.7 101.8 122.9

Y= 889.64: 12.9 19.1 36.9 47.3 50.2 62.1 72.7 94.2 102.0 123.4

Y=1006.48: 13.0 19.0 36.9 46.9 50.3 62.2 73.2 94.3 101.7 122.5

X back Z down

Y= 422.28: 11.6 19.3 36.9 47.5 49.4 61.0 67.3 89.5 90.7 121.3

Y= 578.07: 11.8 19.2 36.9 47.8 49.6 61.4 68.7 91.8 103.9 124.2

Y= 733.85: 11.9 19.1 36.9 47.4 49.7 61.6 69.7 92.2 100.5 126.2

Y= 889.64: 12.1 19.1 36.9 47.0 49.9 61.7 70.5 92.4 100.7 126.9

Y=1006.48: 12.2 19.0 36.9 46.6 50.0 61.8 71.1 92.3 100.4 125.6

X middle Z top

Y= 422.28: 11.9 19.3 36.9 47.3 49.2 60.9 74.7 89.5 100.6 118.0 .,

Y= 578.07: 12.2 19.2 36.9 47.4 49.3 61.4 75.9 92.3 101.2 121.1

Y= 733.85: 12.3 19.1 36.9 47.0 49.4 61.6 76.5 94.3 101.6 120.5

Y= 889.64: 12.4 19.1 36.9 46.6 49.5 61.7 76.9 95.4 101.4 119.6

Y=1006.48: 12.5 19.0 36.9 46.2 49.6 61.8 77.1 95.6 101.0 119.8 ".%

S
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Table 4.4: continued
X middle Z middle

Y= 422.28: 12.2 19.3 36.9 47.2 49.5 61.1 74.1 92.2 100.7 121.8

Y= 578.07: 12.5 19.2 36.9 47.3 49.0 61.5 75.5 95.4 102.6 122.3

Y= 733.85: 12.6 19.2 30.9 47.0 49.7 61.7 70.4 97.0 102.3 122.3 .,

Y= 889.64: 12.9 19.1 36.9 46.5 49.8 61.9 77.0 97.5 102.7 121.9

Y=1006.48: 13.0 19.0 36.9 46.1 49.9 62.0 77.4 97.1 103.1 121.6

X middle Z down

Y= 422.28: 11.8 19.3 36.9 46.9 49.2 0.9 73.0 92.4 100.9 121.3

Y= 578.07: 11.0 19.2 36.9 46.9 49.3 61.3 74.4 95.0 103.3 122.3

Y= 733.85: 12.0 19.2 36.9 46.5 49.5 61.5 75.4 96.4 103.0 122.0

Y= 880.64: 12.2 19.1 36.9 46.1 49.6 61.0 76.1 96.1 102.9 121.6

Y=1006.48: 12.3 19.0 36.9 45.7 49.6 61.6 76.5 95.4 103.2 121.4

X front Z top

Y= 422.28: 11.5 19.21 36.8 4.1 48.7 60.5 75.0 87.6 101.2 117.2

Y=- 578.07: 11.6 19.1 36.9 46.1 49.0 60.9 76.1 90.8 101.9 120.5

Y= 733.85: 11.7 19.1 36.9 45.8 49.1 61.1 76.3 93.1 102.4 121.9

Y-- 889.64: 11.7 19.0 36.8 45.3 49.2 61.1 76.7 93.9 102.1 123.1

Y=1006.48: 11.8 18.9 36.8 44.9 49.2 61.2 76.9 94.0 101.7 123.4

X front Z mniddle

Y= 422.28: 11.9 19.2 36.9 46.3 48.9 60.8 75.4 89.9 102.2 115.2

Y= 578.07: 12.1 19.1 36.9 46.2 49.1 61.2 76.8 93.8 102.8 119.1

Y= 733.85: 12.2 19.1 36.9 45.9 49.2 61.3 77.0 96.2 102.6 120.1 " ,.

Y= 889.64: 12.4 19.0 36.9 45.5 49.3 61.4 77.4 97.2 102.8 121.3

Y=1006.48: 12.5 19.0 36.8 45.1 49.4 61.5 77.6 96.9 102.9 121.7 """"'

X front Z dlown -~~ .

Y= 422.28: 11.7 19.2 36.8 46.1 48.7 60.6 75.1 89.4 92.1 113.3

Y= 578.07: 11.9 19.2 36.8 46.0 48.9 61.1 76.6 89.4 95.7 116.7

Y= 733.85: 12.0 19.1 36.8 45.7 49.1 61.2 76.8 89.2 97.8 117.4 0 0

Y= 3,9 CA: 12.1 19.0 36.8 15.2 19.2 61.3 77.4 88.2 99.2 118.3

V I(( : 1'2'2 9.0:G LS 11). 19.2 GI.. 776 87.5 99.6 118.5

% % %
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Each test gives out two results, the vibration of the end-effector as miea-

sured with an accelerometer, and the motor-rotor displacement as measured

with an optical encoder.

The dynamic model which was discussed in the previous chapter may

now use this motor motion as input to simulate the robot vibrations, and ,.

therefore an evaluation can be done by comparing the experimental to the *.

simulated results. This comparison is shown in detail below.

4.5.1 Computer-Controlled Tests

In order to get information about the robot vibration as the carriages are

moving, we made use of the PDP11/23 computer which controls the robot

to interact with the rest of the instrumentation as depicted in Figure 4.10.

This set-up is the same used by Singer [71]. The motion specified to the

carriage motor (one at a time) is controlled by a PWM pulse width modu-

lated amplifier which is driven by the computer trying to follow a velocity r,

profile (linearly increasing during the first half and linearly decreasing in

the second half). The amplifier drives the motor and receives feedback from •

it to correct for deviations to the specified motion. The real velocity profile

(Figure 4.11) for a test along X-direction shows the corrections done when

compared with the specified profile.

The torsional rigid body motion and superimposed vibration for any of

the three motors MX, MY, or MZ are measured by an incremental optical

encoder HP type HEDS-6010 B08 which transmits data to a microcom-

puter connected to the main computer. These data can then be transmitted

to a bigger computer (VAXII/750) to form a data file.

The acceleration at the end-point (or any other of the test points) is %

received by the IlP analyzer in the usual way, but the trigger is again S •

controlled by the computer through a [)/A converter. he 0%

%. %
% .

"g~q L S'% % %. . .- - ,,,5":,., _ -,":'. ..'.,.,"':-. ,,"-. -. , .': .": :.' ."
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win",
1-

1m

Figure 4.11: Actual Velocity Profile followed by Controller. I

4.5.2 Vibration Results for Motion in X-direction
With the Y-carriage in the middle and the Z-carriage down we ran the M'VX '"
motor along the X-direction from X, = 154 mm to X2 = 291 mm with an .
average acceleration of 0.176g and an average deceleration of 0.181g. The POresulting motor displacement is shown in Figure 4.12, and the corresponding '-""'
velocity after being filtered is given in Figure 4.13. 

.f:
The end-point vibration as measured by an accelerometer pointing along _ _.th: X-direction is shown in the top part of Figures 4.14 and 4.15 (complete _. % °

vibration and vibration at the end of the move, respectively). The linear - , ,'
spectrum of the end vibration is shown in the top part of Figure 4.16. The
correspondig results as obtained with the mathematical model are shown "%;''.%'

..,. *1J

in the bottom part of the same figures. Za gdnene

%
motoralongtheX-directio.fro .,-154...mm...to. 

..
291...... mm wit ..

.a ]- . =,.-.],..",-,-,. average '.,, , ' .=." ac e er to of ..° 0 . '1,, and .an % av r g deceleration of,.. .1 81, . The, . ., .% ,, ," ,,.. _, ,.. ,,%%
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Figure 4.17: Encoder displacement during motion in Y-direction

4 .;. 3  Vibration Results for Motion in Y-direction

The X-carriage was positioned in the middle and the Z-carriage down when rK.-

the carriages were run in the Y-direction from 1, = 498 mm to Y2 = 683

mm with an average acceleration of 0.25g, and an average deceleration

of 0.32g. The motor displacement and velocity are shown in Figure 4.17" .

and Figure 4.18 respectively. The vibration results as obtained by test are

shown in the top part of Figures 4.19 to 4.21. The corresponding results

for the model are shown in the bottom part. -- ,

4.5.4 Vibration Results for Motion in Z-direction

With the X-carriage and Y-carriage positioned in the middle we ran the

Z-carriage from Z, = -486 mm to Z2 = -372 mm with an average accelera-

tion of 1.51g, and an average deceleration of 0.76g. The motor displacement - ." ,"

and velocity are shown in Figure 4.22 and Figure 4.23 respectively. here

01

6-., %

I~~~~~~~o % ~ ~ -4, af~a%..
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Figure 4.18: Encoder velocity during motion in Y-direction

the encoder displacement was filtered using a cut-off frequency of 270 Hz

because the test was of shorter duration and the analyzer could sample the W

resulting vibration with a larger frequency bandwidth. The vibration re-

sults as obtained by test are shown in the top part of Figures 4.24 to 4.26.

The corresponding results of the model simulation are shown in the bottom

part.

4.5.5 Comparison of Simulation and Experimental Re- ]

sults

The fiial test of the mathematical model is in these dynamic experiments

where the robot carriages are run in all three directions and several mea-

surements are taken at the robot end-effector. A careful study of these

results as compared to the model results gives the following general obser- , .

vations.

N(, 'I
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Figure 4.21: Fourier transform of vibration of end-effector at the end of the

move for motion in Y-direction as obtained by test (top) and by simulation * S
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Z-direction as obtained by test (top) and by simulation (bottom)
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" The model predicts the same order of magnitude of the results and

the same dominant harmonics in the spectra.

" The encoder acceleration, after being filtered, contains the dominant

harmonics which are excited by the motor, harmonics which in turn

reflect back to the excitation when the motor tries to maintain a given

velocity profile.

" The system responds not only with the first two or three modes, but

rather with a broad band of frequencies which may be excited.

" The vibration that occurs during the move, in the direction of motion,

follows very closely that of the motor rotor. The end vibration how- %

ever, has its own characteristics which are in part due to the motor

whose forces remain active in order to fix the rotor.

A more specific discussion about each of the motion di:ections is given now:

Motion in X-direction

" The vibration during the move and the end vibration as measured

by the accelerometer shows some drift which if corrected would make a

the plot of experimental data look more like the calculated vibration.

" The end vibration has a peak-to-peak amplitude of approximately 5

0.30 g for the test case and 0.24 g for the calculated one.

" There are two dominant frequencies, one at 12.3 Hz and another at

88 Hz which correspond to the robot modes no.1 and no.8 as shown

in Figures ?? and ??. These modes are clearly excited because of

their predominant X-direction component of end point motion.

0

.J 'p

~%
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* The relative amplitude of these harmonics as seen in the frequency

spectra of Figure 4.16 tend to agree for both cases, experimental and

simulated.

Motion In Y-direction

" The vibration during the move shows the same general shape for

both cases with a peak-to-peak envelope amplitude of 2.0 g for the 0

test case, and 2.5 g for the model.

" The end vibration shows for the test case an envelope of 0.85 g, and

for the model case an envelope of 1.2 g. 6

" The dominant frequencies for both cases have the same general ten-

dency as shown in Figures 4.19 and 4.20. The two most important

harmonics occur at 19 Hz and 36 Hz, and correspond to the robot

modes no.2 and no.3.

Motion in Z-direction

" The vibration during the move has an envelope of 5.0 g for the test

case, and 7.0 g for the model case, the difference being that the model

responds more at the higher dominant harmonic of 230 Hz.

" The end vibration as obtained by test shows more drift here than

in the previous tests. Damping decay is also more visible in this

direction.

" The first two dominant frequencies in the end vibration are 115 Hz

and 176 Hz (perhaps multiples of the line frequency, 60 Hz), but

in general all harmonics are rather uniform in amplitude as seen in

Figure 4.26. The spectra in both cases look similar.

% .
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Chapter 5

CONCLUSIONS AND

RECOMMENDATIONS

5.1 Conclusions ,

1. The basic idea behind the present vibration analysis of the cartesian a,

robot is the connection of substructures which remain time-invariant,

and whose modal characteristics and transfer functions can be read- 40

ily determined either experimentally or analytically. For analytically .l % ImpI'm

determined data, we normally use a finite element analysis proce- ..-

dure to connect the substructures, but CMS can also be used. For

experimentally determined data, the classical way of connecting sub-

structures is the Impedance method, although CMS can be used here

also. For this particular problem, the position dependency eliminates

the possibility of application of the Impedance method, and for the _v

slowly-varying case CMS and FE can be used. The relatively com-

plex structure of each component and the physical availability of the

prototype point towards the use of experimental data for getting a S S

more realistic ioodel. Therefore, the ns, of CMS becomes logical.

117
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2. The fact that CMS uses modal data as input permits us to process 0 S

all experimental data separately, and input the processed data to the

model which can then perform fewer operations to predict the robot

vibrations in a fast way. The matrix handling features of CMS are A A
very convenient when a relatively large number of degrees of freedom

reaieyeryfdere f reo

are to be used to connect the substructures, as in the case of the ," '

robot. '

3. The extension of CMS to the case of slowly-varying systems can be ,

done when the speed at which the carriages move is such that the

time spent in traveling all along the ways is much bigger than a typ-

ical natural period of oscillation. This situation allows us to neglect 0

terms in and and permits a simple manipulation of the data.

The example of a traveling 2-degree of freedom system on a simply

supported beam analyzed with two time scales in Chapter 3 gives an

illustration of the validity of these approximations.

4. When connecting substructures through multiple degrees of freedom

it may happen that a singularity or an ill-condition is present. Since ]

the CMS process involves both the inversion of a matrix A that incor-

porates the compatibility conditions, and the solution of an eigenvalue

problem, a bad distribution of degrees of freedom causes the eigenval- -. ..•a ]
ues to vary significantly from expected values. Furthermore a slight

change in the data may cause a large variation in some eigenvalues.

This can be avoided by detecting those redundant degrees of freedom

and eliminating them or changing the distribution. A technique has •.

been developed in this Thesis to detect and solve these problems.

5. Modal parameter identification has been an issue when we want high -.

precision evaluation of the modal parameters based on experinten- •

U
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tal data. When curve fitting from a transfer function, the modeling ,.--

technique, no matter how precise, has to assume a kind of damp-

ing behavior since miodal damping is one of the parameters that has

to be determined. This damping behavior is difficult to assess with

precision and this is where we have an important source of error.

The procedure developed here consists in taking a very high reso-

lution drive point transfer function by zooming about each mode of

interest, and then curve fitting by applying the nonlinear formula of

the multimodal transfer function to a linear programming technique

(Simplex) that minimizes the square of the residuals.

6. The compatibility conditions used to connect structures normally es- .- -

tablish simple relations like ZA == z, but for some cases where we

have a motor with lead screw, or just a motor M that is supported on

one component A to drive another component B, we then use another

relation which is zA + ZM = zB. This relation enforces the system

kinematic relations and the force equilibrium as well.

7. The use of the GPIB interface to establish communication between

the HP analyzer and the PDP 11/44 computer really enhances the

capabilities to do 3-dimensional analysis since it allows among other

things use of an animated display of the computer predicted mode
.- ah

shapes.

8. The eigenfunctions, determined experimentally for a number of dis- k %

crete points along the ways on which the carriages slide , are subject

to error and that adds bumps to the simulated ways. To smooth this

we curve fit a beam-like eigenfunction to these data to get in addition

to smoothness, a continuous function that permits a faster calculation

of the miode shape valic at the point of connection (eliminating the

.'N~~.**m*.1 p~- . .- .- L
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need for interpolation in real time). V

9. The use of the optical encoder motion that monitors the motor-rotor

displacement during the robot operation to drive the equations of

motion permits us to disregard the control system in the vibration

analysis. After a computer-controlled experiment gives the encoder

motion as well as the real vibration characteristics of the end effector,

a computer simulation that utilizes the proposed mathematical model I

can be run using as input this encoder motion.

10. A dynamic model for the system vibrations that normally contains as

a forcing term the motor force can be manipulated to eliminate the

unknown force in favor of the encoder motion (displacement, veloc-

ity, and acceleration) and have this encoder motion drive the resulting

system of coupled differential equations. This process is not restricted

to time-invariant systems because it is done in the time domain, and

it is simple to use for slowly-varying systems. The elimination of

the unknown force which appears in every equation of the origin,1y

decoupled system is performed by combination of equations that in-

volve multiplication by constants (from eigenvectors) and additions,

plus the incorporation of an extra equation involving the encoder .. '

motion.

11. The arrangement of computer programs to do the analysis is such that
... ,,- ,

the simulation program receives the data in its simplest form, having

already being processed by previous programs so that the real-time

simulation can run efficiently. This fast program however is still 40 -.

times slower than the real-time process when running on a computer ,... :.,

VAX/750 using 10 natural modes of vibration.

12. The rcsults of the inathcinatical model for fixed configuration show
1XII
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that the eigenvalues and eigenvectors correlate relatively well with

the experimental values. The difference in natural frequencies for

the range 0 to 200 Hz is 6.89 % average, and this error is not so

much affected by the convergence rate of the CMS which behaves

like a regular Ritz analysis, but it is more affected by the errors in

the modal parameter estimation, particularly in the scaling of the "

eigenvectors.

13. The results of the mathematical model for the case of the moving

robot show that the vibration follows very closely the encoder ac-

celeration, and this in turn contains in its harmonics (among other

harmonics introduced by the control system) those natural modes of

the robot that are excited by the motion. A comparison of experi-

mental and calculated vibrations show in general good correlation in

magnitude and in frequency content.

14. With regard to the preliminary work of the four-bar linkage, one anal-

ysis that illustrates the nature of the position-dependent problems, or

in other words, of changing boundary conditions is the rocker-beam

analysis. Here we studied the behavior of the first natural frequency

as the boundary conditions changed, having obtained the limiting ,

cases of cantilever beam, pinned-pinned, clamped-pinned and free-

pinned beams. ._.

15. Another result of the four-bar linkage problem, the linearization of

the equations of motion by neglecting higher order terms leads to a

parallel analysis in the moving 2-degree of freedom system on a beam

which allowed extending the method of CMS to position-dependent , , %

problems. "

16. Finally, the dimensional analysis for the four-bar linkage illuistrates

V N ,
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that dynamically similar systems behave in the same way, and there- 0

fore, in the normalization of the mode shapes for the robot problem

we have to distinguish the right member of the family which belongs

to the data obtained in order to properly identify the system.

5.2 Recommendations

1. An improved technique for modal parameter identification should be

pursued to more closely evaluate the modal parameters, particularly

the orthonormal mode shape value since that determines most impor-

tantly the precision of the final simulation results. Different damping

patterns should be examined, and solution of the convergence prob-

lems of multimodal curve fits should be tried.

2. Another study should be.to incorporate the control system to the

mathematical model in order to have a complete representation of the

dynamic system. Again CMS may be used to connect the mechanical

system to the control system through the motors.

3. Another study which would make the model more precise would be to

add corrections to first order to the differential equations by restoring

some of the neglected terms.

4. To make the program faster, one approach that could be tried is thZ

asymptotic approximations to the solution of the differential equa-

tions by curve-fitting first the appropriate data and then apply stan-

dard techniques to approximately solve differential equations with

slowly-varying coefficients. The solution would be expressed as a

function of position and of the motion parameters.

5. Another study should correct the inatheiiiatical model to account v ,
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for torque reactions that occur at the motor base. These reactions

may affect the simulation of cross vibrations (vibrations that occur

perpendicular to the direction of motion).

A%j

N%
N. 'N
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Appendix A

o

MODE SHAPE DATA

i

A.1 Determination of Modal Characteristics

The vibration analysis to be performed on the cartesian robot requires the """?

determination of the natural frequencies and mode shapes of a number .

of structures and components, some of them being rather complicated in

shape. These parts were already described in Chapter 2 and include the ,£,

robot structure, the carriages, and the lead screws. As mentioned before, .'.'e, -

the carriages were tested in a free condition (floating) by suspending them -

on soft foam-pads, and the impact test was applied to a number of test N

points. Also, the robot structure was tested while bolted to the floor by ! .

exciting it with an electrodynamic shaker which was suspended from the

,eiling with a flexible string. Finally, the torsional modes of the lead screws - ,

were obtained analytically. These conditions are summarized in Table A. I. ;-...-.€

The random test using a shaker is more precise than the impact test

when we need a calibrated measurement, and for the case of the robot

structure attached to the floor, this was required in order to normalize the

eigenvectors. For the Z-carriage we required mnore precision than for the' -. ,

otercrriages since its niodal chiara cteristics tend t fetmr h oo
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vibrations. Also, its modes occur at higher frequencies when tested in free- S S

free condition, and the impact test can not give good results above 800 Ilz

due to the roll-off of the impulse force spectrum.

The test set-up for the impact procedure is shown in Figure A.1. The

accelerometer is kept fixed at one convenient test point and the structure

is marked at each of the test points. The instrumented hammer is used

to impact on each of the test points while the analyzer collects a series of

transfer functions. This process can be repeated for a different position of 5

the accelerometer to get a new set of data which added to previous set could

provide a more complete analysis; that is, the second set could show some

of the modes more clearly than the first set. But strictly speaking, one set * .

of tests is sufficient. The analyzer can then process all these data with an

algorithm that determine- .he mode shape values at the test points.

The test set-up for the random test is shown in Figure A.2. Here the

shaker is kept fixed to a convenient test point while the accelerometer has

to be moved around for each new transfer function.

The algorithm used by the analyzer (HP 5423A Structural Dynamics

Analyzer) presents two options to the user, quadrature picking and rational

fraction least squares, both for the single degree of freedom case. The

quadrature picking or line-method is useful when damping is low and the

modes are closely spaced since it only uses the transfer function value at the

mode peak. The rational fraction least squares or band-method curve-fits

a band of the transfer function that includes the mode being analyzed, and

it is more precise when the modes are well separated.

For the cases of very simple geometry, like the lead screws in torsion,

we can analyze them by the theory of continuous-parameter models, par- . .

ticularly when we have one or two uniform elements. Then the analysis is

simple and accirate. •

• ~~~~~~~~~~~~~~~ -. --. . ... -.--. ... - .--. -. . . . .,. . . . . .
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test point
lnsurumcn(cd hammer tetpic

Accelerometer 
fa a

2-channel analyzer

Figure A.l: Test set-up for impact procedure
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accclcromct force transducer
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Figure A.2: Test set-up for random procedure
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Figure A.3: Mode shapes no.1 (top) and no.2 (bottonm) of robot structure
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Figure A.4: Mode shapes no.3 (top) and no.4 (bottom) of robot structure %.f,.

as obtained by test-
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F-(XipietI Tt j Support (Cond(. tesIt ponitlL- B'W (Hz) Elast ic modus('

Structure ranidom fixed-free. 146 0-200 13

X-carriage imipact free-free 043 0-610 40

Y-carriage impact free-free 92 0-510 10

Z-carriage randoin free-free 54 0-1500 5

MX-lead screw analytical free-free continuous -

MY-lead scr(.w ainldytmcal free-free (-olithIlluoms -

MZ analytical F free- free coutinluous -0

Table A.1: Conditions of experimental tests.
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Figure A.10: Drive-point transfer function of robot structure

A.2 Mode Shape Data for Robot Structure a

The robot structure attached to the floor and without carriages gives the

following 13 natural modes of vibration in the frequency range of 0 to 200

Hz(see Figures A.3- A.9). The drive-point transfer function which was

used for normalization of the eigenvectors was obtained by zooming about

each of the modes and then collecting all these transfer functions to make

one single plot (see Figure A.10). This figure shows a collection of nearly t- A

2000 points which give the transfer function absolute values with enough

frequency resolution about each mode of interest. The curve fitting of these

data was already discussed in section 2.3, and the curve fit is shown as a

solid line in the same figure. From this curve fit we determine the modal

parameters in a more precise way than in the standard modal analysis %

and they are used then to normalize the eigenvectors.

- "
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A.3 Mode Shape Data for Carriages

All three carriages were tested separately in a free condition to get the

elastic mode shapes shown in Figures A.11- A.20. The rigid body modes

were calculated as explained in Chapter 2

The normalization was carried out in two different ways according to

the modal test used. For the Z-carriage we used the random test and from

it we got the drive-point transfer function shown in Figure A.21 which is a

collection of zoom transfer functions about each mode. We then curve-fit

the modal parameters as explained in section 2.3.

The X-carriage and Y-carriage were tested by the impact procedure (un-

calibrated) and, then to normalize we used the mass distribution according 0

to a formula of Chapter 2.

A.4 Mode Shapes for Lead Screws A

These mode shapes in torsion were obtained analytically by modeling each '.

lead screw as a uniform shaft with an inertia (motor rotor) attached to one" "

end, as shown in Figure A.22. The natural frequencies for this system are

given by the transcendental equation

-V = tan (wLr ) (A.47) G

and the eigenfunctions are given by

a(x) = C, cos (wx ) + C, sin (wx p ) (A.48)

To normalize we use orthogonality of the normal modes to get

Lp1,,a'(x)dx + Ja'(L)= 1 (A.49)

X
* %
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Figure A.11: Mode shapes no.1 (top) and no.2 (bottom) of X-carriage as

obtained by test
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Figure A.14: Mode shapes no.3 (top) and no.4 (bottom) of Y-carriage as

obtained by test
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Figure A.15: Mode shapes no.5 (top) and no.6 (bottom) of Y-carriage as

obtained by test 
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Figure A.16: Mode shapes no.7 (top) and no.8 (bottom) of Y-carriage as

obtained by test ~<'~

W-~ c0r

% % . . .% %



APPENDIX A. MODE SHAPE DATA 152

FREG (NZ)
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so~

Figure A.17: Mode shapes no.9 (top) and no.10 (bottom) of Y-carriage as

obtained by test
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Figure A.18: Mode shapes no.l (top) and no.2 (bottom) of Z-carriage as \

obtained by test.' ..... ..... %!
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Figure A.20: Mode shape no.5 of Z-carriage as obtained by test
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Figiire A.21: Drive-point transfer fuinction of Z-carriage
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J0

IP

* H
Ct x

L

I p Polar moment of area of shaft
J Moment of inertia of rotor

Figure A.22: Model of motor-rotor and lead-screw

The results for both lead screws were given in Table 2.3. The Z-carriage

motor MZ with its short shaft and pinion is essentially rigid, so we consid-

ered only its rigid body mode in torsion.

A.5 Modal Matrices for Data Input to Math-

ematical Model

The modal matrices to be used in the mathematical model are obtained

from the mode shapes just shown. To get these data files into the computer,

we transfer data from the analyzer through a GPIB interface by means of

a computer program shown in Table A.2.

The modal matrices are formed from these data files by properly scal-

ing them in order to normalize the eigenvectors. If the correct drive-point -

mode-shape value has been obtained by curve-fitting the drive-point trans-

%%
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Table A.2: Computer programs to transmit data, back and forth, between

a pdpl 1/44 computer and an HP analyzer.

C TRAMOD.FTN
S*** * ** * ** ** **** * ** ** 4* *

C
C PROGRAM TO TRANSFER HP5423A MODAL DATA TO THE
C PDP-11/44 VIA THE NATIONAL INSTRUMENTS GPIDII-I INTERFACE.
C
C DATA IS TRANSFERRED IN ASCII BY A 501,4.2 SAVE COMMAND
C
C TIlE O;TPUT FILE IS FORMATTED WITH I VALUE PER RECORD (E15.7)

C NOTE: THE ID: HANDLER USES RSX CHANNEL I
C
C SEE CHAPTER 3 OF VOL. 3 "USING HP-IM" (5423A) I .
C

BYTE BDATA(630), BSAVE(10), FILNAM(20),CSAVE(96) i.

REAL MDATA(999)
INTEGER*4 ASAVE(3)
C
C 501.4.2SA IS THE SAVE TO CONTROLLER COMMAND
C 10 IS THE DECIMAL VALUE OF THE LF TERMINATOR.
C
DATA BSAVE / 5,'0'T,','.'4',',,'2'
DATA IWR,IRE.ICL.ITRJRM,ILO,IPO,ICO,IPC,IDE,IFI
1 /0, 1, 2, 3. 4, 5, 6, 7, 8, 9, 10/
DATA IHP, ITA, ILl /"4, "104, "44/
C
C TELL THE OPERATOR TO PREPARE THE INTERFACE

TYPE *,' TRAMOD- HP5423A to PDP-11/44 data transer program.'
TYPE *,I 

1

TYPE *,'I. Connect the HP-ID cable from the PDP-1ltotheHP.'
TYPE *.'2. Set the HP back panel switch to ADDRESSABLEONLY".'
5 TYPE *.'3. Get mueasurement data on the active trace the JlP.'
TYPE *.'4. Enter 0 to stop or Ito continue
ACCEPT*, J
IF(J .EQ. 0) GO TO 1000
TYPE.' 5. ENTER MODE, IST DOF, AND LAST DOF: ONE AT A TIME'
ACCEPT ASAVE(I)
ACCEPT *. ASAVE(2)
ACCEPT *, ASAVE(3)
NWRDS=ASAVE(3).ASAVE(2)+ 1

I
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Table A.2: continued

C
C FIRST ("LEAR THE BUS
C
10 TYPE *, Initiazizig ... '

J = IBUP(ICL,-1)
IF( J .NE. I)TYPE -,' BUS CLEAR FAILED, ERROR=',J
C
C MAKE SURE THAT ANALYZER IS DEFINED AND ON THE BUS.
C
J1 = IDUP ( IDE. IHP, ITA, ILI, 0, 0, 0, 0)
IF( J .NE. I)TYPE A,' HP DEFINE FAILED, ERROR=',J
J = IBIJP( ICL, IHP)
IF( J1 EQ. I)G0 TO 20
C
15 TYPE *.' TRY AGAIN ? O=NO, STOP; 1=YES:'
ACCEPT ' ,J
IF(J EQ. 0) STOP
GO TO 10
C
C ALL SET, SEND 501,4,2 SAVE COMMAND
C
20 ILEN = 10
J = IBUP( IWR, [HP, BSAVE(1), ILEN)
IF(J .EQ. ILEN)GO TO 30
C
C ERROR
C
25 TYPE *,' SAVE COMMAND FAILED, REC=',J,' SENT=',ILEN 0 6
C
C SERIAL POLL TO GET SDA SRQ
C
J = IBUP( IPO, IHP)
TYPE *,' ANALYZER SRQ =',J
GOTO 15 0
C
C START READING HEADER (3 VARIABLES)
C
C THIS POLL IS NEEDED WHEN CONTROLLER SENDS SAVE COMMAND
C THE PROGRAM WAITS UNTIL THE ANALYZER IS READY (SRQ=96)
C
30 ISAV = 91

DO 35 1 =1,2000

J IBUP(1PO, IUP)I
IF(J .EQ. ISAV)GO TO 38

% %
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Table A.2: continued

35 CONTINUE
TYPE ', TIMEOUT ON SAVSRQ, HP SRQ =',J
GO TO 25
C
38 IHEN = 32
IOF = 1
ILAN=96
ENCODE (ILAN.891,CSAVE (1))ASAVE (1),ASAVEC(2),ASAVE(3)
891 FORIMAT(3I5)
J=IDUIP( IWR.IHP,(CSAVEC-(1),ILAN)
C
C NOW READ IN NWRDS OF (REAL) DATA TO MDATA
C USE BDATA(17-33) AS A BUFFER
C
999 FORMAT(E 14.4)
ILEN = 32
DO 50 1= 1. NWRDS
J1 = IIJUP( IRE. IHP, BDATA(17), ILEN)
DECODE( ILEN-2, 999, J3DATA(17) )MDATA(I)
TYPE .MDATA(I)
50 CONTINUE

C STORE ON DISK FILE IN~ ASCII (2 VALUES IRECORD) L

C
60 TYPE 996
996 FORMAT(' Enter filename for storage:')
ACCEPT 995,FILNAM
995 FORMAT(20A1)
FELNAM(20) = 0
C
OPEN( UNIT=2, NAME=FILNAM, TYPE='NEW', ERR=60)
C
WRITE(2.994j (MDATA(l),I=1,NWRDS)
994 FORMAT(E15.7)
CLOSE(UNIT=2)
TYPE 997,FILNAM
997 FORMAT (IX,'Ascii data and header stored in "',20A1,"')
GO TO 5
1000 STOP
END

%
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Table A.2: continued

C TRARES2.FTN
C PROGRAM TO TRANSFER HP5423A RESIDUE DATA FROM THE
C PDP-11/44 VIA THE NATIONAL INSTRUMENTS GPrn1i-1 INTERFACE.
C
C DATA IS TRANSFERRED IN ASCII BY A 504,1 RECALL COMMAND
C
C THE INPUT FILE SHOULD BE FORMATTED WITH I VALUE PER RECORD (E15.7)
C
C THE PROGRAM TAKES THE 40 VARIABLE HEADER FROM THE END OF THE FILE
C AND SENDS IT FIRST.
C
C NOTE: THE IB: HANDLER USES RSX LOGICAL UNIT I
C SEE THE NATIONAL INSTRUMENTS "GPIBII SOFTWARE REFERENCE MANUAL"
C FOR INFORMATION ON USING THE BUS FROM FORTRAN OR ASSEMBLER
C
C SEE CHAPTER 3 OF VOL. 3 -USING HP-ID"- (5423A)
C FOR THE SAVE/RE CALL DATA AND HE ADER FORMATS
C

C
BYTE BDATA(630), BRCL( 10), FILNAM(20) ,CSAVE(96)
REAL MDATA(700)
INTEGER*4 ASAVE(3)
C
C 504.IRA IS THE RECALL FROM CONTROLLE R COMMAND
C 10 IS THE DECIMAL VALUE OF THE LF TERMINATOR. 5
C
DATA BRCL /,',0''I''''',,, ,RAO
C
C INSTRUMENT BUS UTILITY PROGRAM (lB UP) FUNCTION CODES
C
DATA IWR.IRE .ICL,ITRIRM,ILO,1P0 ,ICO ,PCIDE,IFI
1 /0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
C
DATA IHP, ITA, ILI /-4, "104,-"44/
C
C TELL THE OPERATOR TO PREPARE THE INTERFACE
C
TYPE . 'TRARES2- HP5423A from PDP-11/44 data transferprograzn.'
TYPE -,''

TYPE *,'I. Connect the' HP-ID3 cable from the PDP-11 to theliP.'

%
P- A J-
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Table A.2: continued

TYPE *,'2. Set the HP back pmiel switch to "ADDRESSADLEONLY".'
10 TYPE *,'3. Enter U to stop or I to continue :

ACCEPT ',I
IF(J .EQ. 0) GO TO 1000
TYPE *. '4. ENTER MODE. 1ST MEAS AND LAST MEAS [MAX MEAS+f41F'
rYPE *,'MODE.NE.0[, [(MAX MEAS±I)*4 IF MODE.EQ.01, ONE BY ONE'
ACCEPT ~,ASAVE(1)*
ACCEPT .ASAVE(2)

ACCEPT .ASAVE (3)
NWRDS=ASAVE(3)-ASAVE(2)+ I
C
C FIRST CLEAR THE BUS
C
20 TYPE *.' Initializing ... '

J IBUP(ICL,-1)
IF( J .NE. 1)TYPE ',' BUS CLEAR FAILED, ERROR=',J
C
C MAKE SURE THAT ANALYZER IS DEFINED AND ON THE BUS.
C
J = IBUP( IWE. IHP, ITA, ILI, 0, 0, 0, 0)
IF ( J .NE. 1) TYPE .,' HP DEFINE FAILED, ERROR=',J
J = II3UP ( ICL, IHP)
IF( J .EQ. I)GO TO 40

TYEC'TYAAN? =O TP =E:
30 TPE *'TR AGAN ? =NO STO; I=ES:

ACCEPT *,J
IF(J .EQ. 0)GO TO 1000
GO TO 20
C
C GET NAME OF ASCII FILE (I VALUE / RECORD)
C
40 TYPE 999*
9D9 FORMAT(' Enter filename for transfer (0=quit):')
ACCEPT 998.FILNAM
998 FORMAT(20AI)
IT = FILNAM(1)
IF(IT .EQ. 48) GO TO 1000
FILNAM(20) = 0
C
C GET NUMBER OF DATA VALUES TO SEND
C
50 TYPE 997

0: %~

% %'
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Table A.2: continued

997 FO R MAT{' Enter number of data values to be sent .',/,
1' 512 for tran-A or time, 256 for coh:'S
ACCEPT *, NVAL

C READ DATA AND HEADER FROM FILE

DO 45 1=1,630 S S

D 45 BDATA(I) = 0
OPEN( UNIT=2, NAME=FILNAM, TYPE='OLD, ERR=40)
C
READ(2,996) (MDATA(I),I=I,NVAL)
996 FORMAT(EI5.7)
CLOSE(UNIT=2) .
C
C CHECK THAT NWRDS IN HEADER (VARIABLE 3) = 2 * NVAL
C THE ENCODE ROUTINE TRANSLATES FROM DEC INTERNAL FORM TO ASCII
C THE DECODE ROUTINE TRANSLATES FROM ASCII TO DEC INTERNAL FORM
C THE LAST TWO CHARACTERS ARE CR,LF WHICH ARE NOT DECODED.
C
C ILEN = 16
C IOF = ILEN* 2 + I
C DECODE(ILEN-2, 995, BDATA(IOF) ) BUF
C995 FORMAT(E14.4)
C NWRDS = BUF L
C IF(NWRDS .EQ. 2*NVAL) GO TO 60
C TYPE ,' * ERROR, NVAL DISAGREES WITH HEADER'
C GO TO 60
CC ALL SET, SEND 501,4,1 RECALL COMMAND

60 ILEN = 10

TYPE *,' Sending 501,1 recall command...'
I = IBUP( IWR, IHP, BRCL(1), ELEN)
IF(J .EQ. ILEN)GO TO 80
C
C ERROR
C
70 TYPE ',' RECALL COMMAND FAILED, REC=',J,' SENT=',ILEN Or
C
C SERIAL POLL TO GET SDA SRQ
C
.J = IUP( IPO, IHP)

% % % % %
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Table A.2: continued

TYPE ',' ANALYZER SRQ = ,
GO TO 30
C
C THIS POLL IS NEEDED WHEN CONTROLLE R SENDS RECALL COMMAND
C THE PROGRAM WAITS UNTIL THE ANALYZER IS READY (SRQ=12I)
C -

80 IRCL =121

DO 90 1 =1. 2000
J =ID3UP(IPO. IHP)
IF(J .EQ. IRCL)GO TO 100
90 CONTINUE
TYPE *,' TIMEOUT ON RECALL SRQ, 111 SRQ =',J
GO TO 30
C
C START SENDING HEADER (3 VARIABLES)
C

100 CONTINUE
TYPE *, Sending measurement header...'

IOF=1
ILAN=ge J
ENCODE (ILAN,89 1,C SAVE (1))ASAVE(l),ASAVE(2),ASAVE(3)
891 FORMAT(315)
J=413UP(IWRIHP,CSAVIE(1),ILAN)
C ILEN =16
C IOF =1I
C J = II3UP( IWR, IHP. DDATA(IOF), ILEN)
C IF(J .NE. ILAN)TYPE '.' FIRST VARIABLE TRANSMIT FAILED, 3=',J
C v
C SEND THE REST OF THE HEADER (VARS 7,37)

C DO 110 1= 2,37*__a
C IOF =IOF + ILEN
C TYPE 333.JBDATA(IOF+ J-1)3J=1 ,LEN)
333 FORMAT(22Al)
C J = ImUP( IWR. IHP, I3DATA(IOF), ELEN)
110 CONTINUE
C
C LAST THREE VARS ARE ASCII
C
C IOF =IOF + ILEN
C ILEN =8

%* %0

- <
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Table A.2: continued

C TYPE 333,(BDATA(IOF+J.1),J=1,ILEN)
C J = IDUP( IWR, IHP, DDATA(IOF), MLEN) !INPUT TRANSDUCER MODEL
C IOF = IOF + ILEN
C TYPE 333,(DDATA(IOF+J-l),J=1,ULEN)
C J =IDUIP( IWR, IHP, BDATA(IOF), MLEN) !OUTPUT TRANSD.
C IOF = 101' + ILEN
C MLEN = 22
C TYPE 333,(I3DATA(IOF+J.1),J=1,ILEN)
C J = IBUP( IWR, HIP, BDATA(IOF), ILEN) IMEAS. TITLE 20 CHARS.
C TYPE 994.(DDATA(IOF+I-1)J=1.20),NVAL
994 FORMAT(IX,' Title= "',20A1,'"",/,' Sending',14,' datavalues.')
C
C NOW SEND OUT NVAL OF (REAL) DATA TO THE ANALYZER
C USE BDATA(17.32) AS A BUFFER
C FINISH EACH VARIABLE WITH CR,LF FOR TOTAL OF 16 BYTES /VARIABLE
C
BDATA(31) = 13
BDATA(32) = 10
MLEN = 16
993 FORMAT(E 14.7)
DO 120 1= 1, NVAL
ENCODE( ILEN-2, 993, BDATA(17) )MDATA(I)
TYPE *,MDATA(I)
J = IBUP( IWR, IP, BDATA(17), MLEN)
120 CONTINUE
TYPE *,'Operation finished.'
GO TO 10
1000 CONTINUE
STOP .'~

END

.P. 

*
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fer function, then we scale the eigenvector by pivoting on the current drive- ,

point mode-shape value. If the normalization procedure is based on the

mass distribution of the test points of the component, then we determine

C, the scaling factor, directly.

Each robot component was tested on a number of points which include

the points of connection to other components. These test points are marked

all over the contour of each component in order to see how the mode shapes

are. For data input to the mathematical model, we only need the points of 6

connection.

A.6 Mode Shape Data for Complete Robot, 6

Experimental and Predicted Results

The robot was tested for the configuration shown in Figure 4.1, that is,

with the X-carriage and Y-carriage in the middle and the Z-carriage down.

The mode shapes in the frequency bandwidth of 0 to 200 Hz, as obtained by

experimental test using a shaker, are shown in the top part of Figures A.23-

A.39.

For this same configuration, we have run the mathematical model to

predict the mode shapes of the robot; the synthesized mode shapes are

shown in the bottom part of Figures A.23- A.39. A comparison of natural a
requencies as well as modal damping factors can be seen in Table A.3.

, km
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Figure A.25: mode shape no.3 of complete robot as obtained by test(top)

and by synthesis (bottom) 0
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Figure A.27: mode 9hape no.5 of complete robot as obtained by test(top)

and by synthesis (bot toin)
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Figure A.28: mode shape no.6 of complete robot as obtained by test(top)

and by synthesis(bottoirn)
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Figure A.30: mode shape no.8 of complete robot as obtained by test(top)

and by synthesis(bottoni)
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Figure A.31: mode shape no.9 of complete robot as obtained by test(top)

and by synthesis(bottoni)
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*Figure A.33: mode shape no.11 of complete robot as obtained by test(top)%
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Figure A.34: mode shape no. 12 of coniplete robot as obtained by test(top)
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Figure A.35: mode shape no.13 of conmplete robot as obtained by tcst(top)

and by synthesis (bottom)
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Figure A.36: mode shape no.14 of complete robot as obtained by test(top)

aind by synthesis(bottoim)
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Figure A.39: mode shape no. 17 of complete robot as obtained by test(top)
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Mode Measured Predicted

No. A(Hz) 1 i f(Hzy)

1 12.36 1.98 11.93 1.45

2 18.85 1.65 19.17 1.45

3 36.36 1.42 36.87 0.78

4 42.83 9.52 46.34 3.30

5 47.83 4.90 49.53 2.54

6 60.51 3.24 61.38 1.45

7 70.72 0.89 75.06 1.82

8 81.47 1.95 96.47 0.63

9 86,.67 1.74 101.75 1.41

10 97.70 1.17 123.39 1.30

11 112.52 7.39 126.84 1.06

12 126.27 0.10 128.72 0.756

13 139.43 2.62 141.05 1.16

14 149.85 1.00 145.68 2.86

15 152.34 0.66 148.23 2.76

16 178.12 1.79 169.39 1.04

17 1_84.37 0.01 179.06 1.11

Table A.3: Comparison of natural frequencies and modal damping factors

4 14
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Appendix B

VIBRATION OF MOVING

ROBOT

This appendix describes the method of analysis employed in the study of

robot vibrations during motion,.method which has been used in Chapter 3 ' "%

to do the simulations.

B.1 Methods of Analysis

After briefly mentioning the case of prescribed rigid body motions which

provides a simple approach to th, problem, we then discuss in some detail

the procedures that can be used for the case when the motor-rotor vibration • S

is specified.

B.1.1 Drescribed Rigid Body Motion

As was discussed in Chapter 3, one of the simplest approaches to the prob- -.

leni of predicting the robot vibrations caused by its motion is to prescribe

how a partirular substuicture is moving (as a rigid body) regardless of the '' _

inpmti required to c ia iihiotion, ttils elvwuig otit the cffects of the o Uolot

I %0 e, % ., .
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control system. In order for this procedure to be simple we can assume for

a moment that the substructures are rigid and calculate the forces exerted

at the connection points; forces which would produce that specified motion

of the center of gravity of the substructure under the presence of friction

and gravity. This procedure, although a rough approximation leads to a

relatively fast computer model.

B.1.2 Prescribed Motor-Rotor Vibration S

The motor-rotor motion can be easily determined experimentally from en-

coder data, and this motion, including vibration, may be used as input to

the mathematical model. We drive the mathematical model using this pre-

scribed motor-rotor vibration while ignoring the forcing function exerted

by the amplifier-motor combination. The procedure developed for this pur-

pose had to be restricted to the available data, that is, to the use of modal j..

parameters only. Two suitable techniques for this analysis are described in

what follows.

Frequency-Domain Technique

There is a very powerful technique for this application which works in the

frequency domain through the use of Fourier transforms, unfortunately it

is only valid for time-invariant systems. This can be briefly described as

follows: Consider a flexible system as shown in Figure B.1 where a force

fp(t) is applied at the point P producing a vibration zp(t). Suppose we ..,.

know zp(t) and the transfer function

FP(w)

.d ...p(J •p ,u %"

% % % %-
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Fleible system '

Figure B.1: Flexible system

which may be synthesized from the modal parameters as follows:

--)'-W (. + 2j,wjwB.5)%

Then, by taking the Fourier transform of xp(t) to get Xp(w) we can calculate

Fp(w), and after taking the inverse Fourier transform we can get fp(t). With
%

fp(t) known, we can then integrate the equations of motion

{1+ [2 ,,w,]{P} + [w2]{P} ) t f (B.52)
n •

to get the vibration at any point of the structure by means of {xQ} =

Another procedure which may be faster to apply consists of the follow-

ing. Assume that we also know HpQ(w) as indicated below, and we wish ,

to calculate ZQ(t).

Hp' W-') (B.53)

WN

?# :-'- C., 2
- #%1 *. C



APPENDIX B. VIBRATION OF MOVING ROBOT 187

Then "

XQ(w) (B.54)
F (w)

Solving for F,(w) in equation B.50 and B.54 we can then equate both

expressions to get:
HPQ() )

XQ(W) W) (,) (B.55)

Then we calculate zq(t) from equation B.55 by inverse transforming XQ(w)

all without explicitly calculating the force fp(t).

One source of error in this process may come from the use of the FFT

which assumes that the function xp(t) is periodic, but in this case of robot

motions there is a start point. This start condition is normally taken into

account by extending the time history back from time zero, that is:

0 for t < 0

zp(t) for t > 0

and giving enough span to get good approximation.

Even though this technique was not applied to the study of the robot

vibrations, it could be used to get approximate results if we considered

average values for the transfer functions involved.

Time-Domain technique

A time-domain technique which can be of more general application is the

following:

Consider the same system of Figure B.1 where we ultimately want to

determine the vibration x(t) at any point by knowing xp(t) but not fp(t).

The system can be described by the truncated system of uncoupled equa-

tions B.52. Since there is only one external force fp(t) acting on the system,

we can express the modal force as

'{fM {'Uf~} (13.57)

: . -
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where {a) is formed by the modal matrix evaluated at point P in the

direction of the force.

In addition to the n equations of B.52, we have another condition to be

satisfied:

{Zp} = [0p]{p} = {a)'{p} (B.58)

So, we have n + 1 equations and n + 1 unknowns, those are {p} and fp.

Assuming that a, $4 0 for all Z' we can eliminate from equation B.52 fp

by combining the n equations to get n -1I equations as follows: '4.

" multiply 1st equation by -L : _L5 + ! Wf + -wp, fp.

" multiply i + ith equation by -:0 0

P,- + 2~ w,., 1p,*j + ILw = ?

Subtract to get the ith new equation without the term in fp. Then we

Wk

P~

;tZ '
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get n - I equations for the n variables pi

0 00

± 0 0 0 .0 ,

a1 I 03 i52 + _A _L
0 0 0

1 L., 0
a, -3 0 0

2fw 0 02 2fi 0 ;3

" 0 0 0 -61

a a,

0 0 0 0 0 p' 0 -+
y2 2 - . o p~ ~ 0 0. 0

0 ~ 0 .. 0 0
a, a 3  •PI

P2 0

~i0 0 0. -

0 0 0 0. 0 PnZoj o op,

Now we can apply equation B.58 to add another equation (or row) in

such a way that the mass matrix remains non-singular, that is, by differ-

entiating equation B.58 twice with respect to time: %'.-'.' "

{ip} [pj{ } ={a}t{i} (B.60) ,K-. ,

'.,-'- .

so, the nth equation of B.59 after the addition would contain {a} in the mass '" -, -

matrix and the corresponding forcing function would be {i'}. Therefore,

starting with a coupled system of equations given by equation B.52 and

equation B .58, wc cnd up with a coupled system of equations which is -

driven by the prescribed motion xp(t), and which can be integrated directly

to dctermiine {p} '111 ,iltuimatly {.r}..

% .

% -.%.. ".*
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12 M

m

Substructure A Substrucure B

Figure B.2: Two substructures A,B
°%.

One important observation regarding the application of this method is

that the differentiation of Zp with respect to time assumes that 4j = 0.

This is strictly correct for a time-invariant system, but only approximately

valid for a slowly-varying system. For the general case we would have to

include terms in O'j and Oj in the equations of motion.

APPLICATION TO A SIMPLE CASE

In order to evaluate these methods, we consider a simple case which can

illustrate with detail what we have applied to the study of the cartesian

robot. To make it more similar to the robot case, we include a connection

of two substructures.

The problem is defined as follows. Consider the two substructures, A '.

and B, as shown in Figure B.2. Given z1 (t) of the assembled system, find

x2 (t) of the same assembled system for two different cases:

1.%.'%

""'. " -. % e' ". 'e" '.e .e e" ... e- -2. .r-.---. - ".'v .e- .. .I.-%...v # .-. % .-. e, -v- .' .%. #'."- -e -%"X:
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" Impulse response.

" Step response.

Synthesis of Modal Data for Assembled System

Substructure A has the following modal parameters:

kW 1.10 OA v2m %/2vn ,f4 (B.61)

J 72-m V2m I

Substructure B has

[W'] I L, [OB] I - {fn} = 0 (B.62)

The uncoupled equations before assembly are given by

i* I + [1w2]{PA} =['kAj TjfA}

= 1~]f2} (B.63)

{X2) = {X3), Or [0A2I{PA} = [D]{PB} (B-64)

Choosing PB as the generalized coordinate to be eliminated, we get

{PB} = -[t([kA2 ]{fPA} = JL ±IPA} (B.65)

Then, the transformation matrix T as defined by formula 2,7 becomes

1 0

IT= 0 1 ,for the case q1 = PAI (B.66)

I q2 = PAI

V %/2%
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The assembled systein is obtained by0

[i]=[T]T [T], [k] =[T]
T [w2]j[T], {F) [TIT [4JT1(f} (B.67)

Sbstituting the previously obtained values, we get:

5 1 + 2 - 1,2M (B.68)I. ~ 2- -k& 2kA +L ii q2 .' I2 2 %/2rn

*This assembled system has the cigenvalues

2 1 3kA + k + 9 Ak~ixi
W12 4 2 (B.69)

and the eigenvectorsr1
1 0~412 (B.70)

0k21 0k22

This can be verified to be exactly correct for the resulting system shown

in Figure B.3.

Analysis by Frequency- Domnain Technique ,

In order to get the response at X2 given the response at x1 , we can apply

the frequency- domain technique described above. First we decouple the

system of equations given by B.68 to get

+1  ( 1 0 ri(1 +120 (~zm+ 2m- (B.71)

0~1 1 2~ 0' [~ w 2 r2 (4612 + 022)m
The transfer function at point x, is

2 + 2 (B.72)

So, by applying equation B3.72 we can obtain F, (w) and from there f, (t).

Integrating equations B.68 we can determine x1(t) as shown below, or we

can use H12 in comibination with U1t in formula 13.5-1 t~o get X2-(w) directly, I%

-uld~~~ 0rili .

R4P

ki 'r S
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xt

2m a

Figure B.3: Assembled A-B

Analysis by Time-Domain Technique

The prescribed vibration xl(t) is related to the variables q by

x,=[~{} (B.73)

First we eliminate f, from equation B.68 by subtracting the first row

from the 2nd to get

[2 2] it +[-kB 2kA+kn] q = 0 (B.74)

q2 i
Differentiating equation B.73 twice with respect to time, and adding that

equation to B.74 we get

2 2-k,3 21A + ka qi 1I (B7

+ (B 75
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These equations B.75 can be integrated directly to get q1 (t) and q2(t)

to then get

X 2 (i) (01q 0A21q, + 052Mq (B,76)

An alternative way to arrive at the differential equation driven by the

prescribed motion x, consists of eliminating one of the q , say q2 from

equation B.73, and substitute in equation B.75 to get a single equation

kA + k = ii + M-(2kA + kB)zI (B.77)
q + 2m 2 4m

Results

Two kinds of inputs or prescribed motions at zi can be employed now. The

impulse response is given by

Z2 (t) 61 4'. sin (W2t) + L' sin (wit) (B.78)
W2 W1

and the step response by

X2 (t) COS ( (1 t)) + 2(2 - cos (W2t)) (B.79)

1 2

The corresponding responses at X2 as given by the first method are

shown in Figure B.4 and Figure B.5, where the calculated response is the

top plot and the expected response z2 (t) is shown for comparison at the

bottom. Both results, the calculated and the expected, are very similar.

K' f

-,..-X S.

- .. -,
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Figure B.5: Response at X2 to step-response input at xi, calciflated (top) N

and expected (bottom) ~

% %



i 0

Appendix C

PRELIMINARY STUDY OF 6

VIBRATIONS OF

A GEOMETRICALLY

NONLINEAR SYSTEM
~.N

C.1 Preliminary Vibration Analysis

Before we started doing the analysis of the cartesian robot, we were involved

in the study of the vibration characteristics of a four-bar linkage with elastic

input and output shafts which presented some common characteristics with. S

the cartesian robot, and from whose analysis we could get insights into the

problem of position-dependent systems. The experience obtained in the

preliminary study facilitated the development of a procedure to analyze -

the robot vibrations, and that is why we dedicate this Appendix to its

presentation.de

The system consists of a crank-rocker mechanism with flexible input

and output shafts (see Figure C.1). The input shaft transmits power fromi

197

. . . - €. . ,... , . - - . ,.- . . . .- o€ --,,. . . .-
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m 2 ,L 2 , K2

o,* S

IOIuly,t ) E3 ,133. A3

000

i4 , (Ls .t )

Figure C.A: Continuous parameter model of the system

an ideal motor, represented by its rotor inertia [i, to the crank. The input

shaft stiffness is normally high as is the first natural torsional frequency

of the shaft considered in isolation. Also the shaft inertia is usually quite

small as compared to that of the rotor. Therefore, the shaft may be modeled

as a linear torsional spring and viscous damper with spring and damping

coefficients K, and C1 .

for this study the crank and connecting rod are assumed to be short

and their natural frequencies in bending, considered as isolated beams are

assumed high when compared with the length and bending natural fr- .

quency of the rocker. Therefore the input link is considered to be a rigid "''
link of mass mi and inertia 11 and the coupler link is modeled as a link of

Mass rn2 inertia I., and axial stiffness K.,. The rocker is a long uniform

ienimber; it has niass rn 3 , and elasticity in bending only. The output shaft

is rigidly ati ached to the rocker, and is l)erpendictilar to the rocker's plane

of motions. It is a uniforin circilar shaft of lergth L.,, dianieter d,, polar

-~%
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moment of inertia 1 , density p., ,and shear modulus G,. At the end of the

shaft there is a system load represented as an inertia 14.

Before proceeding to derive the equations, we should point out the sim-

ilarities and differences with the robot problem:

" For a given configuration of these systems, the modal characteristics

can be calculated by one of several methods, and these modal param-

eters may be different from those corresponding to another configura-

tion, that is, by changing relative positions the boundary conditions

of some elements may change, or the relative inertias and stiffnesses

may vary. This is true for both systems, and as we will see later, the

method to obtain the modal parameters has to be chosen according

to the system complexity, and the more complex the system, the sim-

pler the method ought to be in order to be able to solve the resulting

differential equations. S

" The four-bar linkage p oblem consists of finding steady-state solutions

and the cyclic variation of the system coefficients is fast as compared

to the vibration which takes place superposed on the rigid body mo-

tion. On the other hand, the cartesian robot p-oblem concerns finding

transient vibrations which occur during motion of the carriages; thfs

system can be modeled as a slowly varying one, that is, the system
• S

coefficients vary slowly as compared to the vibrations. In both cases, 779

the solution involves integration of a system of differential equations

with variable coefficients. .%." .

C.2 Introduction

Many authors have studied the vibration of four-bar linkages with one or

niore cl.tstic links. In 1972, ILrdman, Sandor and Oakberg [211 reported P,

'~1* ~ .. *p ~. ~ ** -. ** ~ - *'\ **- ..-. * -• ~,,. ,- N'.'; ., €: ,V. -. ,: '-- A-. , . , . -. - . .,W.-,,V ,,-,
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using Finite Element methods to study an elastic linkage. In their analysis *
they considered effects of input speed fluctuations. In 1973,Imam, Sandor

and Kramer [42] applied quasi-static structural techniques to this prob-

lenm; they included in their analysis the rate of change of eigenvalues and

eigenvectors to reduce the computer time. In 1973, Sadler and Sandor [68]

analyzed a linkage with rigid crank and elastic coupler links using Euler-

Bernoulli theory for beams; to solve the equations they used the difference

approximation and Taylor expansions. The same authors in 1974 [69] ana-

lyzed a crank-rocker mechanism with rotationd inertia in the output. They

modeled the crank link as a cantilever beam and the coupler and rocker

links as simply supported beanis.Sutherland [74] , in 1976 assumed sinu-

soidal mode shapes for the elastic links in order to model their behavior;

he applied both analytical and numerical methods to solve the equations. ,.

For all of these analyses, the input link is assumed to be driven directly by

the motor; for many cases, input link angular velocity is considered con-

stant and there are no loads assumed to be acting on the system except

the inertia loads of the links. In fact however, most linkages in use are

driven through input shafts which are not rigid and motions of interest

are often those of inertias being driven by shafts connected to the output

or rocker link. Examples are found in industrial sewing machines, paper

making machines, packaging machines, and others. Often the frequencies

of the first torsional resonances of the input and output shafts are near

the bending frequencies of the links. As a result, the resonances of the

system are coupled and cannot be evaluated correctly unless the character- "

istics of the input and output shafts are taken into consideration. In 1978, V1,

Sanders and Tesar [70] performed an analytical and experimental study of

linkages with transverse coupler link vibrations which are uncoupled with

the vibrations of the rest of the system. They recommend relatively robust



I --

APPENDIX C. PRELIMINARY STUDY OF VIBRATIONS 201. 7.., -/

mechanisms for high speed linkages. However, robust mechanisms carry I

weight penalties which are unacceptable in many applications. As demand

for faster systems is increasing ard because vibration is the phenomenon

which most often limits the speed at which a high-speed mechanism can

operate, it is important to develop tools for predicting frequency response

for mechanisms consisting of flexible linkages and elastic input and output

shafts. To date only a few authors have included in their models the effects
It @

of flexibility in the system input and output shafts or the effects of inertial

loads on the ends of these shafts. In 1967, Capellen [13] considered input

and output shafts but did not account for any elasticity in the linkage it-

self. In 1977, Kohli, Hunter and Sandor [50] included the elastic effects of t .

supports and input and output shafts on the vibration of an elastic linkage;

they applied fourier series representations to model the deflections of the

links. In this paper we consider the case in which a four-bar linkage with an

elastic rocker or output link is driven by a motor through a flexible input

shaft and drives, through connection to the rocker link, a flexible output

shaft which in turn drives an inertial load.(Figure C.1).

Starting with a continuous parameter model of the system, the behavior

of the rocker-beam is analyzed, and from these results a lumped parame-

ter model is constructed. Then the equations of motion are linearized to . . .

get a system of differential equations with periodic coefficients. Finally a

dimensional analysis leads to a procedure for design of such linkages whose

resonances do not match frequencies of system energy input.

• @

•C . r. ,

4 ~%

* S

% .% .%- % %%%>- ,-% % % .
* ~S C CM *~~ 'MX 'k v ~ . , '. C,
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C.3 Description of the Continuous Parame-

ter Model

Figure C1 shows a crank-rocker mechanism with flexible input and out-

put shafts. Two discrete and two continuous generalized coordinates are 9' .

required to describe this system. They are the following:

I 00 , the angular position of the motor rotor •

I 01 , the angular position of the input link

• u(y, t) the displacement from static equilibrium of all points on the

rocker

e O(x, t) , the torsional displacement from static equilibrium of all

poi,-ts on the output shaft.

We shall derive the equations of motion of this continuous system for dis-

crete configurations; that is, for small motior about a given position of

the crank; using the energy Method [20].

C.3.1 Kinetic co-energies

The system elements have the following kinetic co-energies:

* Output shaft: To = 1f' p I', (2t)2 dx '

" Inertia 14 : T; 114 (a,0)2

Rocker: T; = fof P3 A3 ( -dy

*Crank: T" = %

Motor inertia: T I I(O

.Ll,%

' %" z-

M'
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Coupler: T'6 - AO2 where

A f,4+ m,,(L~ + i + L I L 212 cos (0 1 - 082)) whe re i 2 and 13 (used

later) are the angular velocity ratios as defined by Paul [601.

I ~sin (0.- 0)

0, L1 sin(
0

-i 0:i)

61 - J L Sin (8 2 - 0)

" Total kinetic energy: T* = T; + T; + ... + T;

C.3.2 Potential Energies

The system elements have the following potential energies:

" Output shaft: V, = 1 fjL3 G. I,, (2t)'d

Rocker: V2 Y=' ~ L 3 3 ( dy

" Input shaft: V3 = !K 1(01 - 00)2

" Coupler axial spring: V4 = !K2(NIVL1 01 - N2uL ) 2 
,where fe

N, = sin (01 - 02) and N2 = sin (03 - 02) are the factors that project

the displacements at the ends of the coupler in the direction of the

coupler, and

UL =u(L, t). A

" Total potential energy: V V VI + V2 + V3 + V4

C.3.3 Generalized Forces0 _-a

Variation of virtual work is 6W = T0600 - CA9601 -C 2 ( ').:600

Then Z0o 7' T, Zq, =-C9 1 , Zo,0 = C(f.

%
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Using Hamilton's principle t201 we obtain:0

VI = ]'(bL + Z,s'dt, L T 7 - V

Substitution of above expressions for T and V into the expression for the

Variational indicator and then integration by parts both timewise and

spacewise produces the equations of motion and boundary conditions at

the vanishing of the Variational indicator for arbitrary variations of the

generalized coordinates. These are as follows: S

Ps !0 + CL = 0 %'nO0 < x < L

P3A371 u + E3133 !L- = OinO < y <z L3

dt a - =Oa

14= Oat-+G.1,.2 = 0t =L

at 81

E3 I3323 + K2 N2(NILI61 - N2UL) =Oat y =L 3

For this derivation the equation of motion for 01 has been linearized

by considering small motions about a given configuration. To solve the

eigenvalue problem, we put temporarily C1 = C2 =0, To 0 and try

solutions of the form: 0

a/(x, t) = a,,(x) sin (w,, t + ~

u (y, t) = b,,(y) sin (w,,t +4)

81 (t) = bi sin (W" t +4

Oo (t) = Oo sin (w,,t +4

The substitution of these solutions into the above equations gives:

21

p~T~,~z +- G, 0, On0 < x < T, (C.80) S
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-P3A3w 2bn(X) + E3133 a4b,()= 0, in < y <L 3  (.

-Wn(Ij +A)9 1 +K(b 1-b1 1 )+K2V1L1O -K 2NN 2Lbt(L) =0, atO1 (C.82) 1
Iowbo0 + K, (bo - b)= 0, at Oo (C.83)

-.p - 4 Wna% 0, at x L,(C.84)
ax

ca, a2b (ui)_
G x a+ 0, at x = ,y =0 (C.85)

ax E333 aS

c92bn(y) = 0, at y = L3  (C.86)

-33 ~, K22b.(y) - K2N1 N2L181  0, at y =L 3  (C.87)

Also from geometry: bn(0) = 0, and an(0)=

From (1) we get:

a,,(x) C1s Sin Wn + C2 COS Wn

From (2) we get:

b.()= C3 sin y + C 4 COS Oy + Cj sinht6y + Q cosh fly

where~ 3 PAW)/

After some manipulations in order to eliminate the constants C, through

Ce, 6, and bo we can get the transcendental equation:

Z,= Z,(C.88)

where

= 0(cot OL3  cothI3L3) + 2U 2 ili 3  + s7.tL 3

VC - 1 .

and

- 22 - N1 ~,~(K 1 (u, + /3"-. (cot flL3 - coth flL.)
-ir 0 t r cos,, , 3 + s ~i ii J L. + cotli 31,3 cosli ,3Lj - sinh /3L3)
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with 0
-K, + [-w (t + A) + K, + K.N2L ,](K ,

K 2 NN 2 Lj

From equation C.88 we can obtain an infinite set of eigenvalues which con-

sists of a subset reflecting rocker bending, a subset reflecting shaft torsional

vibration and a subset reflecting lumped parameter vibration modes. The

behavior of the rocker is particularly important because one of its eigenval-

ues may be at or near the system energy input frequency for some system

configurations and the magnitudes of its eigenvalues depend on all the pa-

rameters of the system. For example, if the stiffness of the input shaft is

large and I0 (motor inertia) is large, the rocker tends to behave as a beam

whose upper end is pinned, whereas if the input shaft stiffness is small,the :-

rocker tends to behave as a free-end beam. Additionally, if both the stiff-

ness of the output shaft and the output inertia 14 are large, then near the

fixed bearing the rocker tends to behave as a clamped-end beam while if 0

this stiffness is small,it behaves as a pinned-end beam. To illustrate this

behavior we define a parameter a as follows:

W/,bendg E3-a4

V GP3A 3L3
where a depends on the boundary conditions. Values of a for typical bound-

ary conditions are as follows [291:

" hinged-clamped a = 3.91

" hinged-hinged a = ir .. ,..

" cantilever a = 1.87 0 0

" free-hinged a = 0. "'.

After solving the eigenvalue problem for several values of K, and K, for

fixed K3 we obtain the behavior of a vs K1 for the two values of K., (see

. .. . ,, . .
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Figure C.2. Behavior of a vs. Ki for various values of K.

Figure C.2). Note that in the case where both input and output shafts are

soft, a for the rocker takes a value (zero) appropriate for a beam hinged or

pinned at its base and free at the coupler end. When both shafts are stiff,

the value of a is that of a beam clamped at the base and hinged at the

other end. For a soft input and stiff output shaft, the value of a is that of

a cantilever , while for a stiff input and a soft output shaft a has the value

fitting a hinged-hinged beam.

C.4 Description of Simplified Models

For most actual systems, the motor inertia is very high compared to the

inertias of each link of the mechanism and the input shaft is short and

therefore very stiff. Existence of these conditions implies that the rocker ". .

will behave near the rocker-coupler joint as a pinned beam. Based on this

implication, a lending deformation pattern for the rocker can be assumed S
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ql(t) 31 ' 
3

603 0 S

14 0

Figure C.3: Lumped parameter model of the system

and a much simpler system model, described by a set of ordinary differential *
equations, can then be developed. Validity of this assumption, for a specific

system can be checked by comparing results of this simplified analysis to

those obtained from the analysis of the more precise continuous model.
* 0

From the simple model, a finite number of eigenvalues and mode shapes

will be obtained.For most problems, only a finite range of eigenvalues is

of interest and so the loss of higher eigenvalues is not a serious limitation,

and the simplified system equations are much easier to solve than are those

for the continuous model. For the case of a large motor inertia and a stiff

input shaft, the vibration induced deflection pattern of the rocker link can

be assumed to be sinusoidal. * 0

u(y,t) = q(t) sin -
L3

For this case, a nondimensional generalized coordinate z - q/L 3 is chosen.

The output shaft is tnodeled as a massless spring K,. Figure C.3 shows

W ill,1111k,115bN 1
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this simplified model.The Lagrangian for this system is as follows:

L=0I"2[I± + 9  + m 2(L? + + LIL 2i 2  CO - 02))]+-

Ib2 + 442 + IM3 (- +_a 2L 4 ) (C.89)

- N ( - 0o)2 - rZ,)2 _ (O_

where 7rz, the slope of the rocker beam near the fixed bearing relative

to its position at static equilibrium, is considered approximately equal to

the angle made by a tangent to the beam at the fixed bearing with respect

to the position of the beam in static equilibrium. From the Lagrangian

we can derive equations of motion which are nonlinear ordinary differential

equations. Note that the term in M3 is the kinetic energy of the beam and

is obtained by

.2 tA1
KE =- j3A v~dy

where

v = 03Y' +,iL 3 sin -L3

and the term in z is the potential energy of the beam and is obtained by

V = 31. L [a 9 (zL sin )] 2dl

To obtain a more precise but still a simple set of system equations, we

can, instead of taking zL3 sin(-) as the first natural mode of the beam,

take the actual mode shape obtained from the continuous parameter model

discussed above, then

b (y, t) = zL 3 [C3 sin OY + C4 cos /6y + C5 sinh 8y + Ce coshy 3y_

where C3 ,C4 ,C 5 and C6 are determined for a particular case from the con-

tinuous model. The kinetic and potential energies then become:

KE = l3Lb2+ fi2 + f2j3z)

V C d- 1 f3 Z0
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Figure C.4: Variation of three natural frequencies with crank position for

quasi-static case

where fl, f2, f3 are constants derived for the particular case. When these

energies are incorporated into the Lagrangian (10), we obtain equations of

motion, this time by use of Lagrange's equations, which more precisely

describe the bending motion of the link, (see equation(f1) which for w = 0

gives the quasi-static case.) For a given linkage configuration we linearize

the equations of motion and since the coefficients are constant we can form

and solve the eigenvalue problem. When this solution is obtained for various

configurations we can determine the variation of the system eigenvalues in ;

one cycle of the crank as a function of crank angle. Figure C.4 shows

how the eigenvalues change for discrete crank positions. Shown are results

for the continuous model. Results obtained from the lumped mass models

are very similar. To obtain values for these eigenvalues, we have used the

system parameters calculated from drawings of a linkage which is part of

an indistrial sewig mnchine that has preseitted its mantifacturer with a
nci

9 '~d ~t*7~' S ~' yN;N~\V
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serious vibration problem during high speed operation.

This system exhibited a strong vibration at 400 Hz with the crank speed

at 100 Hz, illustrating that even for a small ratio of crank length to ground

link length, 0.13 in this case, the geometric nonlinearity brought about an

important parametric excitation. Values of the chosen system parameters

are shown in table C.1.

The lumped parameter system has four generalized coordinates and has

therefore four eigenvalues, one of which is zero. Note that for the frequency

range of interest(0-1000 Hz) the eigenvalues are nearly constant around the

cycle and this allows us to consider fl, f2, fa to be constants.

C.5 Comparison of the Continuous and Lumped

Mass Models

* 0

In order to illustrate the comparison of the eigenvalues obtained from the

lumped parameter models with the ones obtained from the continuous pa-

rameter model which are known to be more precise, we have solved each

eigenvalue problem for various system parameters with the crank position 0

fixed at 90 degrees. These results are shown in figure C.5 and Figure C.6.

Differences in the first eigenvalues are seen to be small for a wide range of

input shaft stiffnesses for two choices of output shaft stiffnesses.Maximum

difference is 5 % of the peak value.

C.6 Linearized System Vibration for Steady

Motor Rotation

In order to linearize the equations of motion we assume that the motor

rotates at constant speed and that a small amplitude vibration can be * 0

I"% k

J NO" 5r

- - .S
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l= .02mn rnl = 4.08341E - 2 Kg

L= .035m M2= 2.60775E - 2 Kg

L3 =.150mrn = 1.70105E - 2 Kg

G = .155m Io = 2.82528E - 1Kg - m

133 = 9.037E - 12m4 Ij = 5.12082E - 6Kg - M

E3 = 2.OGOIEIIN/rnj2  12 = 2.7468E - 6Kg - m 2

K, 5258 N-i/rad 13 = 1.2753E - 4Kg - M

K, .202 N-rn/rad 14 =1.56E - 3Kg - M

Table 0.1: Data of a Particular Mechanism

1200

N 100

* - continuous model
a. - lumped model, exact

L.90 /lumped model, sinusoidal
mode shape P

00511.52
Log Kl/K 3

Figure C.5: Comparison of behavior of first natural frequency in bending

obtained from the continuous and the lumped models. Case of G=0.1
K3S

Ill PI
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4/,

N%

2 000

C
o::* - continuous model .

-" lumped model, exact S
mode shape. 500 -- lumped model, sinmsoidal
mods shape

0 0 i 1.5 2
Log KI/K 3

Figure C.6: Comparison of behavior of first natural frequency in bending .' .

obtained from the continuous and the lumped models. Case of = 10.

superimposed on the rigid body motion. Then we can obtain a system of _. ,

linear differential equations with periodic coefficients. To do this we define 9

a new generalized coordinate 01 which will replace 0o and 01 ,thus reducing

the number of degrees of freedom to three, as follows:

0s1= O0, 01= 0 1 + Wt

where w is the angular velocity of the motor and t is the time. To first

order approximation -. :'

03 = 03+t3s's .+.i.01

where 93 is the rocker position for rigid body motion and 63 is the corrected
value. Also

'=&1+ w,

03 -i3W + i3j2l

'I % % % V\\*
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The equations of motion obtained from this system can be linearized asS

follows:
= 6i4 (already small)

z = z (already small)

84 0 3 + 6194

These equations then are:'

AZ3 2~ mLi 3  4

0 14 0 684 +
L41m 3L 2i3 0 fIm3L~ 2 3 J
[A'w + C1 - C2i -C 2i3  TC2i3  0

TC2i3  TC2  -T2 b4 +tr
TC~i -TC T 22 + 3 Z(C.90)

K, + K 21' - K 2i3 TK2i3  6t~1

T K2i3  TK2  T2 K+fE2 }0
TK ~ K2  -TK 2 694 f fn b

M 'mLK3W2-C 2i3W

where

I, A + I2 *i2 + m2[L2 + 1L2i + L IL2i2 COS (01-82)]

* T = a(C3 + C5), obtained from mode shape (continuous model)

Ii

These equations (11) can be integrated numerically to get the steady state

response and determine the amplitudes of vibration and the frequency con-

tent. I.-

Because the process of numerical integration can be expensive in terms

of compitter tinie, it is helpful to pe'rformi a (ltMcnsimial analysis before

- '~%~.~,/ % Vy ~ %.j'. q ~ j,~**. ~ % ~ ~2.%%
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integrating. Then each numerical solution will apply to a family of mecha- S

nisms. Define the nondimensional parameters:

2V'K.s 4 ' 2%/K~i3

and the following parameters with dimensions of frequency:

07- n3LL'
r. 0 =V L3 7 3 L,,

Define also a dimensionless timei 04=ft Then,

The quaion ofmotion (11) become after some manipulations:

o (nj2 0 69.4 + .
\041

2 1 0 fitbi
Li2 A)21 -iD(-_1) 2  -TiD2() 2

-21 3 D 2 ( 01) 2  2D 2 ( 1) 2  66402 11a) b"

2Ti3D2 (a01) 2  -2i 3D2(g) 2T 2D2(W) + ' D3 -f110

(-0) + i3( A)2 -i3(-0-) 2  AT3 ( nj) - a
- i3(j1)2 (__1)2 -T _11) 2 b

Ti(4-T( ') 2  (T A)2 + f3(1 02  b 6z I

1)14- 2i 3D2( 114 (1)

K3' 2 I232(fa2
-- 3 2i3D 2(')Q)

(C.91)

whe rere
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3S

00

o 0

0 5000 10000

(Frequency) 2  (Hz) 2

Figure C.7: Frequency response of two members of a family of mechanisms. .

The original data corresponds to ordinate 2

o A= (1)2 +,i21)2 + (1a)2 + ()ico (9-)+

a T- a(C3+ C5 ), obtained from mode shape(continuous model)

From these equations (12) we can observe clearly the consequences of dy-
namic similarity [64]. If for example the system has a small value for the

damping ratio as most mechanisms do, then changing all the stiffnesses $.. "
proportionally, or all the inertias proportionally will not change the dy- . .

namic response expressed in nondimensional variables. Therefore, all the
systems that have the same ratio of . -K- hf '2' -1 belong to a faro-

K.' ' ' ' 14 ' 14 4 14

ily whose dynamic response is unique. By translating the results from the

nondimensional space to a dimensional space, we can produce the following

graph.(See figure C.7).

.. , ,, . - .. , .., , . , ., , . , .. , -, , . -, -
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This figure shows the frequency response for two members of the family.

Each data point represents an angular displacement of the inertial mass on

the output shaft as determined from a numerical integration with respect

to its expected position for rigid body motion during operation at the given

motor angular velocity. The angular displacement is an RMS displacement

measured at 256 points during six cycles of the input crank after the system

had reached equilibrium. For the two members of the family shown, all

system stiffnesses differ by a factor of 2; damping ratios and inertias for both 0

are the same. From the figure we see that if amplitudes are plotted vs w2 ,

points of constant response amplitude for the two family members occur at

frequencies which lie on a straight line emanating from the origin. This is as .

expected on the basis of the system equations (12) and of dynamic similarity 0 .

[64]. After the frequency response for one member of the family is obtained,

these results can be extended to any other member simply by scaling the

frequency axis appropriately. Having performed this analysis for a family

from which a designer expects to pick a member, and having determined

from design considerations the frequencies (driving frequency for example)

at which energy will be introduced into the system, the designer can now S •

pick a member of the family whose frequency response at the known input

frequencies is low.

C.7 Summary

Analysis of a four-bar linkage system with flexible input and output shafts

has shown that for typical system parameters, the flexibility in the driv- •

ing and driven shafts have a significant influence on the system response.

Quasi-static response has been reported for a continuous parameter system

model, and this response has been compared to that obtained for much

. % ,. ' , ", . N ",.,, - .'. - ,, • ". ,.," *,,,% % . % ' , . ,",, -. 5,,, 0
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simpler lumped parameter system models. For wide ranges of system pa- 6

ramcters, the lumped system responses are similar to those obtained from

the more precise continuous system model. Values for first and second

system natural frequencies are shown to vary only slightly with changes in

system geometry. Two sets of nondimensionalized lumped parameter model

system equations, one assuming sinusoidal mode shape for the rocker link

and one using for rocker link mode shapes the shapes determined from

the quasi-static analysis of the continuous model, have been integrated nu- •

merically to establish dynamic system response. Resulting plots of RMS

displacement of the output shaft about its calculated rigid body motion po-

sition vs. frequency of the input shaft rotation can be examined, and from .

these results, and on the basis of dynamic similarity, design parameters for

the system can be chosen so as to minimize RMS response at frequencies

to which the system is likely to be subjected.
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